109
Views
3
CrossRef citations to date
0
Altmetric
Note

Flow liquefaction instability and the permissible range of fractional order of sand

&
Pages 1182-1197 | Received 29 Aug 2019, Accepted 05 Dec 2019, Published online: 19 Dec 2019

References

  • Alipour, M. J., & Lashkari, A. (2018). Sand instability under constant shear drained stress path. International Journal of Solids Structures, 150, 66–82. doi:10.1016/j.ijsolstr.2018.06.003
  • Azizi, A. (2009). Experimental study and modeling behavior of granular materials in constant deviatoric stress loading. Tehran, Iran: Amirkabir University of Technology.
  • Been, K., & Jefferies, M. G. (1985). A state parameter for sands. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 35(2), 99–112. doi:10.1016/0148-9062(85)90263-3
  • Boukpeti, N., Mróz, Z., & Drescher, A. (2002). A model for static liquefaction in triaxial compression and extension. Canadian Geotechnical Journal, 39(6), 1243–1253. doi:10.1139/t02-066
  • Chu, J., Leroueil, S., & Leong, W. K. (2003). Unstable behaviour of sand and its implication for slope instability. Canadian Geotechnical Journal, 40(5), 873–885. doi:10.1139/t03-039
  • Chu, J., Leong, W. K., Loke, W. L., & Wanatowski, D. (2012). Instability of loose sand under drained conditions. Journal of Geotechnical and Geoenvironmental Engineering, 138(2), 207–216. doi:10.1061/(ASCE)GT.1943-5606.0000574
  • Chu, J., Wanatowski, D., Loke, W.L., & Leong, W.K. (2015). Pre-failure instability of sand under dilatancy rate controlled conditions. Soils and Foundations, 55(2), 414–424. doi:10.1016/j.sandf.2015.02.015
  • Darve, F., & Chau, B. (1987). Constitutive instabilities in incrementally non-linear modelling. Constitutive Laws for Engineering Materials, 301–310.
  • Dubujet, P., & Doanh, T. (1997). Undrained instability of very loose hostun sand in triaxial compression and extension. Part 2: Theoretical analysis using an elastoplasticity model. Mechanics of Cohesive-Frictional Materials, 2(1), 71–92. doi:10.1002/(SICI)1099-1484(199701)2:1 < 71::AID-CFM25 > 3.0.CO;2-9
  • Farahmand, K., Lashkari, A., & Ghalandarzadeh, A. (2016). Firoozkuh sand: Introduction of a benchmark for geomechanical studies. Iranian Journal of Science and Technology, Transactions of Civil Engineering, 40(2), 133–148. doi:10.1007/s40996-016-0009-0
  • Golchin, A., & Lashkari, A. (2014). A critical state sand model with elastic–plastic coupling. International Journal of Solids and Structures, 51(15/16), 2807–2825. doi:10.1016/j.ijsolstr.2014.03.032
  • Hardin, B. O., & Richart, J. F. E. (1963). Elastic wave velocities in granular soils. J Soil Mech Found Div, ASCE, 89(1), 33–66.
  • He, J., Chu, J., & Liu, H. (2014). Undrained shear strength of desaturated loose sand under monotonic shearing. Soils and Foundations, 54(4), 910–916. doi:10.1016/j.sandf.2014.06.020
  • Hill, R. (1958). A general theory of uniqueness and stability in elastic-plastic solids. Journal of the Mechanics and Physics of Solids., 6(3), 236–249. doi:10.1016/0022-5096(58)90029-2
  • Lashkari, A. (2014). Recommendations for extension and re-calibration of an existing sand constitutive model taking into account varying non-plastic fines content. Soil Dynamics and Earthquake Engineering, 61–62(0), 212–238. doi:10.1016/j.soildyn.2014.02.012
  • Lashkari, A. (2017). A simple critical state interface model and its application in prediction of shaft resistance of non-displacement piles in sand. Computers and Geotechnics, 88, 95–110. doi:10.1016/j.compgeo.2017.03.008
  • Lashkari, A., & Golchin, A. (2014). On the influence of elastic–plastic coupling on sands response. Computers and Geotechnics, 55, 352–364. doi:10.1016/j.compgeo.2013.09.016
  • Lashkari, A. L. I., & Karimi, M. (2016). Dem study of critical state in binary granular soils and a unified constitutive model for clean and silty sands. Bulletin of Earthquake Engineering, 2(4 #B00250), 27–45.
  • Lashkari, A., & Yaghtin, M. S. (2018). Sand flow liquefaction instability under shear–volume coupled strain paths. Géotechnique, 68(11), 1002–1024. doi:10.1680/jgeot.17.P.164
  • Lashkari, A., Karimi, A., Fakharian, K., & Kaviani-Hamedani, F. (2017). Prediction of undrained behavior of isotropically and anisotropically consolidated firoozkuh sand: Instability and flow liquefaction. International Journal of Geomechanics, 17(10), 04017083. doi:10.1061/(ASCE)GM.1943-5622.0000958
  • Lashkari, A., Khodadadi, M., Binesh, S. M., & Rahman, M. M. (2019). Instability of particulate assemblies under constant shear drained stress path: Dem approach. International Journal of Geomechanics, 19(6), 04019049. doi:10.1061/(ASCE)GM.1943-5622.0001407
  • Li, X., & Dafalias, Y. (2000). Dilatancy for cohesionless soils. Géotechnique, 50(4), 449–460. doi:10.1680/geot.2000.50.4.449
  • Li, X., & Wang, Y. (1998). Linear representation of steady-state line for sand. Journal of Geotechnical and Geoenvironmental Engineering, 124(12), 1215–1217. doi:10.1061/(ASCE)1090-0241(1998)124:12(1215)
  • Liu, M., & Gao, Y. (2017). Constitutive modeling of coarse-grained materials incorporating the effect of particle breakage on critical state behavior in a framework of generalized plasticity. International Journal of Geomechanics, 17(5), 04016113. doi:10.1061/(ASCE)GM.1943-5622.0000759
  • Lu, D., Liang, J., & Du, X. (2019). Fractional elastoplastic constitutive model for soils based on a novel 3d fractional plastic flow rule. Computers and Geotechnics105, 277–290. doi:10.1016/j.compgeo.2018.10.004
  • Meghachou, M. (1992). Stabilitédes sables laches: Essais et modélisations. Oran, Algeria: Université d'Oran.
  • Nicot, F., Challamel, N., Lerbet, J., Prunier, F., & Darve, F. (2012). Some insights into structure instability and the second-order work criterion. International Journal of Solids and Structures, 49(1), 132–142. doi:10.1016/j.ijsolstr.2011.09.017
  • Petalas, A. L., Dafalias, Y. F., & Papadimitriou, A. G. (2019). Sanisand-f: Sand constitutive model with evolving fabric anisotropy. International Journal of Solids Structures, doi:10.1016/j.ijsolstr.2019.09.005
  • Sasitharan, S., Robertson, P. K., Sego, D. C., & Morgenstern, N. R. (1994). State-boundary surface for very loose sand and its practical implications. Canadian Geotechnical Journal, 31(3), 321–334. doi:10.1139/t94-040
  • Schofield, A., & Wroth, P. (1968). Critical state soil mechanics. London: McGraw-Hill.
  • Shi, X. S., Herle, I., & Yin, J. (2018). Laboratory study of the shear strength and state boundary surface of a natural lumpy soil. Journal of Geotechnical and Geoenvironmental Engineering, 144(12), 04018093. doi:10.1061/(ASCE)GT.1943-5606.0001987
  • Sumelka, W. (2014). A note on non-associated drucker-prager plastic flow in terms of fractional calculus. Journal of Theoretical And Applied Mechanics, 52(2), 571–574. doi:10.15632/jtam-pl.53.4.959
  • Sumelka, W., & Nowak, M. (2016). Non-normality and induced plastic anisotropy under fractional plastic flow rule: A numerical study. International Journal for Numerical and Analytical Methods in Geomechanics, 40(5), 651–675. doi:10.1002/nag.2421
  • Sun, Y., Gao, Y., & Shen, Y. (2019). Mathematical aspect of the state-dependent stress-dilatancy of granular soil under triaxial loading. Géotechnique,69(2), 158-165. doi:10.1680/jgeot.17.t.029
  • Sun, Y., Gao, Y., & Zhu, Q. (2018). Fractional order plasticity modelling of state-dependent behaviour of granular soils without using plastic potential. International Journal of Plasticity, 102, 53–69. doi:10.1016/j.ijplas.2017.12.001
  • Sun, Y., Sumelka, W., & Gao, Y. (2019). Advantages and limitations of an α-plasticity model for sand. Acta Geotech, doi:10.1007/s11440-019-00877-9
  • Sun, Y., & Xiao, Y. (2017). Fractional order plasticity model for granular soils subjected to monotonic triaxial compression. International Journal of Solids and Structures, 118-119, 224–234. doi:10.1016/j.ijsolstr.2017.03.005
  • Sun, Y., Xiao, Y., Zheng, C., & Hanif, K. F. (2016). Modelling long-term deformation of granular soils incorporating the concept of fractional calculus. Acta Mechanica Sinica, 32(1), 112–124. doi:10.1007/s10409-015-0490-x
  • Szymczyk, M., Nowak, M., & Sumelka, W. (2018). Numerical study of dynamic properties of fractional viscoplasticity model. Symmetry, 10(7), 282–217. doi:10.3390/sym10070282
  • Taiebat, M., Jeremić, B., Dafalias, Y. F., Kaynia, A. M., & Cheng, Z. (2010). Propagation of seismic waves through liquefied soils. Soil Dynamics and Earthquake Engineering, 30(4), 236–257. doi:10.1016/j.soildyn.2009.11.003
  • Verdugo, R., & Ishihara, K. (1996). The steady state of sandy soils. Soils and Foundations, 36(2), 81–91. doi:10.3208/sandf.36.2_81
  • Wang, Z.-L., Dafalias, Y. F., Li, X.-S., & Makdisi, F. I. (2002). State pressure index for modeling sand behavior. Journal of Geotechnical and Geoenvironmental Engineering, 128(6), 511–519. doi:10.1061/(ASCE)1090-0241(2002)128:6(511)
  • Xiao, Y., Liu, H., & Ding, X. (2015). Influence of particle breakage on critical state line of rockfill material. Int J Geomech, 16(1), 04015031. doi:10.1061/(ASCE)GM.1943-5622.0000538
  • Yu, F. (2017). Particle breakage and the critical state of sands. Géotechnique, 67(8), 713–719. doi:10.1680/jgeot.15.P.250

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.