358
Views
2
CrossRef citations to date
0
Altmetric
Original Articles

Identifying the parameters of a hydro-mechanical model for internal erosion occurring in granular soils by using an enhanced backtracking search algorithm

, , , &
Pages 2325-2344 | Received 25 Mar 2020, Accepted 02 Apr 2020, Published online: 27 Apr 2020

References

  • Bendahmane, F., Marot, D., & Alexis, A. (2008). Experimental parametric study of suffusion and backward erosion. Journal of Geotechnical and Geoenvironmental Engineering, 134(1), 57–67. doi:10.1061/(ASCE)1090-0241(2008)134:1(57)
  • Bonelli, S., & Marot, D. (2008). On the modelling of internal soil erosion. In Mahendra N., Jadhav (ed.), The 12th International Conference of International Association for Computer Methods and Advances in Geomechanics (IACMAG), Curran, p. 7.
  • Calvello, M., & Finno, R. J. (2004). Selecting parameters to optimize in model calibration by inverse analysis. Computers and Geotechnics, 31(5), 410–424. doi:10.1016/j.compgeo.2004.03.004
  • Chang, D. (2012). Internal erosion and overtopping erosion of Earth dams and landslide dams [Thesis]. The Hong Kong University of Science and Technology.
  • Chang, D. S., & Zhang, L. M. (2011). A stress-controlled erosion apparatus for studying internal erosion in soils. Geotechnical Testing Journal, 34(6), 103889–103589. doi:10.1520/GTJ103889
  • Chen, D., Lu, R., Zou, F., Li, S., & Wang, P. (2017a). A learning and niching based backtracking search optimisation algorithm and its applications in global optimisation and ANN training. Neurocomputing, 266, 579–594. doi:10.1016/j.neucom.2017.05.076
  • Chen, D., Zou, F., Lu, R., & Wang, P. (2017b). Learning backtracking search optimisation algorithm and its application. Information Sciences, 376, 71–94. doi:10.1016/j.ins.2016.10.002
  • Civicioglu, P. (2013). Backtracking search optimization algorithm for numerical optimization problems. Applied Mathematics and Computation, 219(15), 8121–8144. doi:10.1016/j.amc.2013.02.017
  • Cividini, A., & Gioda, G. (2004). Finite-element approach to the erosion and transport of fine particles in granular soils. International Journal of Geomechanics, 4(3), 191–198. doi:10.1061/(ASCE)1532-3641(2004)4:3(191)
  • Crosta, G., & Prisco, Cd. (1999). On slope instability induced by seepage erosion. Canadian Geotechnical Journal, 36(6), 1056–1073. doi:10.1139/t99-062
  • Fell, R., Wan, C. F., Cyganiewicz, J., & Foster, M. (2003). Time for development of internal erosion and piping in embankment dams. Journal of Geotechnical and Geoenvironmental Engineering, 129(4), 307–314. doi:10.1061/(ASCE)1090-0241(2003)129:4(307)
  • Foster, M., Fell, R., & Spannagle, M. (2000). The statistics of embankment dam failures and accidents. Canadian Geotechnical Journal, 37(5), 1000–1024. doi:10.1139/t00-030
  • Hu, W., Hicher, P.-Y., Scaringi, G., Xu, Q., Van Asch, T., & Wang, G. (2018). Seismic precursor to instability induced by internal erosion in loose granular slopes. Géotechnique, 68(11), 989–913. doi:10.1680/jgeot.17.P.079
  • Jin, Y.-F., & Yin, Z.-Y. (2020). Enhancement of backtracking search algorithm for identifying soil parameters. International Journal for Numerical and Analytical Methods in Geomechanics, 1– 23. doi:10.1002/nag.3059
  • Jin, Y.-F., Yin, Z.-Y., Riou, Y., & Hicher, P.-Y. (2016). Identifying creep and destructuration related soil parameters by optimization methods. KSCE Journal of Civil Engineering, 21(4), 1123–1134. doi:10.1007/s12205-016-0378-8
  • Jin, Y.-F., Yin, Z.-Y., Shen, S.-L., & Hicher, P.-Y. (2016a). Investigation into MOGA for identifying parameters of a critical-state-based sand model and parameters correlation by factor analysis. Acta Geotechnica, 11(5), 1131–1145. doi:10.1007/s11440-015-0425-5
  • Jin, Y. F., Yin, Z. Y., Shen, S. L., & Hicher, P. Y. (2016b). Selection of sand models and identification of parameters using an enhanced genetic algorithm. International Journal for Numerical and Analytical Methods in Geomechanics, 40(8), 1219–1240. doi:10.1002/nag.2487
  • Jin, Y.-F., Yin, Z.-Y., Shen, S.-L., & Zhang, D.-M. (2016). A new hybrid real-coded genetic algorithm and its application to parameters identification of soils. Inverse Problems in Science and Engineering, 25(9), 1343–1324. (2016). 19315. doi:10.1080/17415977
  • Jin, Y.-F., Yin, Z.-Y., Wu, Z.-X., & Zhou, W.-H. (2018). Identifying parameters of easily crushable sand and application to offshore pile driving. Ocean Engineering, 154, 416–429. doi:10.1016/j.oceaneng.2018.01.023
  • Jin, Y.-F., Yin, Z.-Y., Zhou, W.-H., & Horpibulsuk, S. (2019). Identifying parameters of advanced soil models using an enhanced transitional Markov chain Monte Carlo method. Acta Geotechnica, 14(6), 1925–1947. doi:10.1007/s11440-019-00847-1
  • Jin, Y.-F., Yin, Z.-Y., Zhou, W.-H., & Huang, H.-W. (2019). Multi-objective optimization-based updating of predictions during excavation. Engineering Applications of Artificial Intelligence, 78, 102–123. doi:10.1016/j.engappai.2018.11.002
  • Jin, Y.-F., Yin, Z.-Y., Zhou, W.-H., & Shao, J.-F. (2019). Bayesian model selection for sand with generalization ability evaluation. International Journal for Numerical and Analytical Methods in Geomechanics, 43(14), 2305–2327. doi:10.1002/nag.2979
  • Kang, F., Li, J., & Ma, Z. (2013). An artificial bee colony algorithm for locating the critical slip surface in slope stability analysis. Engineering Optimization, 45(2), 207–223. doi:10.1080/0305215X.2012.665451
  • Kang, F., Li, J., Ma, Z., & Li, H. (2011). Artificial bee colony algorithm with local search for numerical optimization. Journal of Software, 6(3), 490–497. doi:10.4304/jsw.6.3.490-497
  • Ke, L., & Takahashi, A. (2014a). Triaxial erosion test for evaluation of mechanical consequences of internal erosion. Geotechnical Testing Journal, 37(2), 20130049–20130364. doi:10.1520/GTJ20130049
  • Ke, L., & Takahashi, A. (2014b). Experimental investigations on suffusion characteristics and its mechanical consequences on saturated cohesionless soil. Soils and Foundations, 54(4), 713–730. doi:10.1016/j.sandf.2014.06.024
  • Kenney, T., & Lau, D. (1985). Internal stability of granular filters. Canadian Geotechnical Journal, 22(2), 215–225. doi:10.1139/t85-029
  • Knabe, T., Datcheva, M., Lahmer, T., Cotecchia, F., & Schanz, T. (2013). Identification of constitutive parameters of soil using an optimization strategy and statistical analysis. Computers and Geotechnics, 49, 143–157. doi:10.1016/j.compgeo.2012.10.002
  • Lei, X., Yang, Z., He, S., Liu, E., Wong, H., & Li, X. (2017). Numerical investigation of rainfall-induced fines migration and its influences on slope stability. Acta Geotechnica, 12(6), 1431–1446. doi:10.1007/s11440-017-0600-y
  • Levasseur, S., Malécot, Y., Boulon, M., & Flavigny, E. (2008). Soil parameter identification using a genetic algorithm. International Journal for Numerical and Analytical Methods in Geomechanics, 32(2), 189–213. doi:10.1002/nag.614
  • Lominé, F., Scholtès, L., Sibille, L., & Poullain, P. (2013). Modeling of fluid–solid interaction in granular media with coupled lattice Boltzmann/discrete element methods: application to piping erosion. International Journal for Numerical and Analytical Methods in Geomechanics, 37(6), 577–596. doi:10.1002/nag.1109
  • Luo, Y-l., Qiao, L., Liu, X-x., Zhan, M-l., & Sheng, J-c. (2013). Hydro-mechanical experiments on suffusion under long-term large hydraulic heads. Natural Hazards, 65(3), 1361–1377. doi:10.1007/s11069-012-0415-y
  • Mansouri, M., El Youssoufi, M. S., & Nicot, F. (2017). Numerical simulation of the quicksand phenomenon by a 3D coupled Discrete Element‐Lattice Boltzmann hydromechanical model. International Journal for Numerical and Analytical Methods in Geomechanics, 41(3), 338–358. doi:10.1002/nag.2556
  • Marot, D., Rochim, A., Nguyen, H.-H., Bendahmane, F., & Sibille, L. (2016). Assessing the susceptibility of gap-graded soils to internal erosion: proposition of a new experimental methodology. Natural Hazards, 83(1), 365–388. doi:10.1007/s11069-016-2319-8
  • Moffat, R., & Fannin, R. J. (2011). A hydromechanical relation governing internal stability of cohesionless soil. Canadian Geotechnical Journal, 48(3), 413–424. doi:10.1139/T10-070
  • Muir Wood, D. (2007). The magic of sands—the 20th Bjerrum Lecture presented in Oslo, 25 November 2005. Canadian Geotechnical Journal, 44(11), 1329–1350. doi:10.1139/T07-060
  • Nama, S., Saha, A. K., & Ghosh, S. (2017). Improved backtracking search algorithm for pseudo dynamic active earth pressure on retaining wall supporting c-Ф backfill. Applied Soft Computing, 52, 885–897. doi:10.1016/j.asoc.2016.09.037
  • Pal, S., Wije Wathugala, G., & Kundu, S. (1996). Calibration of a constitutive model using genetic algorithms. Computers and Geotechnics, 19(4), 325–348. doi:10.1016/S0266-352X(96)00006-7
  • Papamichos, E., Vardoulakis, I., Tronvoll, J., & Skjaerstein, A. (2001). Volumetric sand production model and experiment. International Journal for Numerical and Analytical Methods in Geomechanics, 25(8), 789–808. doi:10.1002/nag.154
  • Papon, A., Riou, Y., Dano, C., & Hicher, P. Y. (2012). Single-and multi-objective genetic algorithm optimization for identifying soil parameters. International Journal for Numerical and Analytical Methods in Geomechanics, 36(5), 597–618. doi:10.1002/nag.1019
  • Pinar Civicioglu. (2013). Backtracking Search Optimization Algorithm for numerical optimization problems. Applied Mathematics and Computation, 219, (2013), 8121–8144.
  • Reboul, N., Vincens, E., & Cambou, B. (2008). A statistical analysis of void size distribution in a simulated narrowly graded packing of spheres. Granular Matter, 10(6), 457–468. doi:10.1007/s10035-008-0111-5
  • Rochim, A., Marot, D., Sibille, L., & Thao Le, V. (2017). Effects of hydraulic loading history on suffusion susceptibility of cohesionless soils. Journal of Geotechnical and Geoenvironmental Engineering, 143(7), 04017025. doi:10.1061/(ASCE)GT.1943-5606.0001673
  • Rönnqvist, H., Fannin, J., & Viklander, P. (2014). On the use of empirical methods for assessment of filters in embankment dams. Géotechnique Letters, 4(4), 272–282. doi:10.1680/geolett.14.00055
  • Sari, H., Chareyre, B., Catalano, E., Philippe, P., & Vincens, E. (2011). Investigation of internal erosion processes using a coupled dem-fluid method. In E. Oate and D. R. J. Owen (Eds.), Particles 2011 II international conference on particle-based methods (pp. 1–11). Barcelona, Spain: International Center for Numerical Methods in Engineering (CIMNE).
  • Shen, S., Wang, Z., & Cheng, W. (2017). Estimation of lateral displacement induced by jet grouting in clayey soils. Géotechnique, 67(7), 621–630. doi:10.1680/jgeot.16.P.159
  • Shen, S.-L., & Xu, Y.-S. (2011). Numerical evaluation of land subsidence induced by groundwater pumping in Shanghai. Canadian Geotechnical Journal, 48(9), 1378–1392. doi:10.1139/t11-049
  • Sibille, L., Lominé, F., Poullain, P., Sail, Y., & Marot, D. (2015). Internal erosion in granular media: direct numerical simulations and energy interpretation. Hydrological Processes, 29(9), 2149–2163. doi:10.1002/hyp.10351
  • Sibille, L., Marot, D., & Sail, Y. (2015). A description of internal erosion by suffusion and induced settlements on cohesionless granular matter. Acta Geotechnica, 10(6), 735–748. doi:10.1007/s11440-015-0388-6
  • Skempton, A., & Brogan, J. (1994). Experiments on piping in sandy gravels. Géotechnique, 44(3), 449–460. doi:10.1680/geot.1994.44.3.449
  • Slangen, P., & Fannin, R. (2017). A flexible wall permeameter for investigating suffusion and suffosion. Geotechnical Testing Journal, 40(1), 20150287–20150214. doi:10.1520/GTJ20150287
  • Stavropoulou, M., Papanastasiou, P., & Vardoulakis, I. (1998). Coupled wellbore erosion and stability analysis. International Journal for Numerical and Analytical Methods in Geomechanics, 22(9), 749–769. doi:10.1002/(SICI)1096-9853(199809)22:9<749::AID-NAG944>3.0.CO;2-K
  • Sterpi, D. (2003). Effects of the erosion and transport of fine particles due to seepage flow. International Journal of Geomechanics, 3(1), 111–122. doi:10.1061/(ASCE)1532-3641(2003)3:1(111)
  • Vardoulakis, I., Stavropoulou, M., & Papanastasiou, P. (1996). Hydro-mechanical aspects of the sand production problem. Transport in Porous Media, 22(2), 225–244. doi:10.1007/BF01143517
  • Wan, C. F., & Fell, R. (2004). Investigation of rate of erosion of soils in embankment dams. Journal of Geotechnical and Geoenvironmental Engineering, 130(4), 373–380. doi:10.1061/(ASCE)1090-0241(2004)130:4(373)
  • Wan, C. F., & Fell, R. (2008). Assessing the potential of internal instability and suffusion in embankment dams and their foundations. Journal of Geotechnical and Geoenvironmental Engineering, 134(3), 401–407. doi:10.1061/(ASCE)1090-0241(2008)134:3(401)
  • Wu, H.-N., Shen, S.-L., & Yang, J. (2017). Identification of tunnel settlement caused by land subsidence in soft deposit of Shanghai. Journal of Performance of Constructed Facilities, 31(6), 04017092. doi:10.1061/(ASCE)CF.1943-5509.0001082
  • Xu, Y., & Zhang, L. (2009). Breaching parameters for earth and rockfill dams. Journal of Geotechnical and Geoenvironmental Engineering, 135(12), 1957–1970. doi:10.1061/(ASCE)GT.1943-5606.0000162
  • Yang, J., Yin, Z.-Y., Laouafa, F., & Hicher, P.-Y. (2019a). Analysis of suffusion in cohesionless soils with randomly distributed porosity and fines content. Computers and Geotechnics, 111, 157–171. doi:. doi:10.1016/j.compgeo.2019.03.011
  • Yang, J., Yin, Z.-Y., Laouafa, F., & Hicher, P.-Y. (2019b). Modeling coupled erosion and filtration of fine particles in granular media. Acta Geotechnica, 14(6), 1615–1627. doi:10.1007/s11440-019-00808-8
  • Yang, J., Yin, Z.-Y., Laouafa, F., & Hicher, P.-Y. (2019c). Hydro-mechanical modeling of granular soils considering internal erosion. Canadian Geotechnical Journal, 57(2), 157–172. doi:10.1139/cgj-2018-0653
  • Yang, J., Yin, Z. Y., Laouafa, F., & Hicher, P. Y. (2019d). Internal erosion in dike‐on‐foundation modeled by a coupled hydromechanical approach. International Journal for Numerical and Analytical Methods in Geomechanics, 43(3), 663–683. doi:10.1002/nag.2877
  • Yerro, A., Rohe, A., & Soga, K. (2017). Modelling internal erosion with the material point method. Procedia Engineering, 175, 365–372. doi:10.1016/j.proeng.2017.01.048
  • Yin, Z. Y., & Hicher, P. Y. (2008). Identifying parameters controlling soil delayed behaviour from laboratory and in situ pressuremeter testing. International Journal for Numerical and Analytical Methods in Geomechanics, 32(12), 1515–1535. doi:10.1002/nag.684
  • Yin, Z.-Y., Huang, H.-W., & Hicher, P.-Y. (2016). Elastoplastic modeling of sand–silt mixtures. Soils and Foundations, 56(3), 520–532. doi:10.1016/j.sandf.2016.04.017
  • Yin, Z.-Y., Jin, Y.-F., Huang, H.-W., & Shen, S.-L. (2016). Evolutionary polynomial regression based modelling of clay compressibility using an enhanced hybrid real-coded genetic algorithm. Engineering Geology, 210, 158–167. doi:10.1016/j.enggeo.2016.06.016
  • Yin, Z.-Y., Jin, Y.-F., Shen, J. S., & Hicher, P.-Y. (2018). Optimization techniques for identifying soil parameters in geotechnical engineering: Comparative study and enhancement. International Journal for Numerical and Analytical Methods in Geomechanics, 42(1), 70–94. doi:10.1002/nag.2714
  • Yin, Z.-Y., Jin, Y.-F., Shen, S.-L., & Huang, H.-W. (2016). An efficient optimization method for identifying parameters of soft structured clay by an enhanced genetic algorithm and elastic–viscoplastic model. Acta Geotechnica, 12(4), 849–819. doi:10.1007/s11440-016-0486-0
  • Yin, Z.-Y., Wu, Z.-X., & Hicher, P.-Y. (2018). Modeling monotonic and cyclic behavior of granular materials by exponential constitutive function. Journal of Engineering Mechanics, 144(4), 04018014. doi:10.1061/(ASCE)EM.1943-7889.0001437
  • Yin, Z.-Y., Zhao, J., & Hicher, P.-Y. (2014). A micromechanics-based model for sand-silt mixtures. International Journal of Solids and Structures, 51(6), 1350–1363. doi:10.1016/j.ijsolstr.2013.12.027
  • Zhang, F., Li, M., Peng, M., Chen, C., & Zhang, L. (2019). Three-dimensional DEM modeling of the stress–strain behavior for the gap-graded soils subjected to internal erosion. Acta Geotechnica, 14(2), 487–417. doi:10.1007/s11440-018-0655-4
  • Zhang, L., & Chen, Q. (2006). Seepage failure mechanism of the Gouhou rockfill dam during reservoir water infiltration. Soils and Foundations, 46(5), 557–568. doi:10.3208/sandf.46.557
  • Zhang, L., Xu, Y., & Jia, J. (2009). Analysis of earth dam failures: A database approach. Georisk: Assessment and Management of Risk for Engineered Systems and Geohazards, 3(3), 184–189. doi:10.1080/17499510902831759
  • Zhang, X., Wong, H., Leo, C., Bui, T., Wang, J., Sun, W., & Huang, Z. (2013). A thermodynamics-based model on the internal erosion of earth structures. Geotechnical and Geological Engineering, 31(2), 479–492. doi:10.1007/s10706-012-9600-8
  • Zhang, Y., Gallipoli, D., & Augarde, C. E. (2009). Simulation-based calibration of geotechnical parameters using parallel hybrid moving boundary particle swarm optimization. Computers and Geotechnics, 36(4), 604–615. doi:10.1016/j.compgeo.2008.09.005
  • Zhao, J., & Shan, T. (2013). Coupled CFD–DEM simulation of fluid–particle interaction in geomechanics. Powder Technology, 239, 248–258. doi:10.1016/j.powtec.2013.02.003
  • Zhao, B., Zhang, L., Jeng, D., Wang, J., & Chen, J. (2015). Inverse analysis of deep excavation using differential evolution algorithm. International Journal for Numerical and Analytical Methods in Geomechanics, 39(2), 115–134. doi:10.1002/nag.2287

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.