161
Views
1
CrossRef citations to date
0
Altmetric
Original Articles

Introducing strut efficiency factor in the softened strut and tie model for the ultimate shear strength prediction of steel RC deep beams based on experimental study

&
Pages 5129-5166 | Received 27 Aug 2020, Accepted 30 Jan 2021, Published online: 01 Mar 2021

References

  • AASHTO LRFD. (2012). Bridge design specifications. American Association of State Highway and Transportation OfficialsWashington, 1635.pp.
  • ACI 318. (2014). Building code requirements for structural concrete and commentary. (ACI 318-14). ACI, Farmington Hills, MI, 520 pp.
  • Adebar, P. (2000). One-way shear strength of large footings. Canadian Journal of Civil Engineering, 27(3), 553–562. https://doi.org/10.1139/l00-008
  • Ahmad, S. H., & Lue, D. (1987). Flexure-shear interaction of reinforced high strength concrete beams. ACI Structural Journal, 84(4), 330–341.
  • AS 3600. (1994). Committee BD/2. Australian Standard. Concrete structures standards. Association of Australia.
  • ASCE-ACI 445. (1998). Recent approaches to shear design of structural concrete. Journal of Structural Engineering, 124(12), 1375–1417.
  • Brown, M. D., & Bayrak, O. (2008). Design of deep beams using strut-and-tie models—Part I: Evaluating US provisions. ACI Structural Journal, 105(4), 395–404.
  • CEB-fib. (1999). Textbook on behavior, design, and performance. Vol. 1(bulletin 1). International federation for structural concrete.
  • Chang, T. S., & Kesler, C. E. (1958). Static and fatigue strength in shear of beams with tensile reinforcement. ACI Journal of Proceedings, 54(6), 1033–1057.
  • Clark, A. P. (1951). Diagonal tension in reinforced concrete beams. ACI Journal, 48(10), 145–156.
  • Collins, M. P., & Mitchell, D. (1986). Rational approach to shear design- The 1984 Canadian code provisions. ACI Journal of Proceedings, 105(5), 925–933.
  • Collins, M. P., & Mitchell, D. (1991). Pre stressed concrete structures, 766. Prentice hall Inc.
  • Collins, M. P., Mitchell, D., & Bentz, E. C. (2008). Shear design of concrete structures. Journal of Structural Engineering ASCE, 86(10), 32–39.
  • CP: 110. (1972). British standard code of practice for the structural use of concrete. British Standards Institution, London, Part-I, pp.14–16.
  • de Cossio, R. D., & Siess, C. P. (1960). Behavior and strength in shear of beams and frames without web reinforcement. ACI Journal of Proceedings, 54(61), 695–735.
  • de Paiva, H. R., & Siess, C. P. (1965). Strength and behavior of deep beams in shear. ASCE Structural Journal, 91(ST5), 22.
  • Dischinger, F. (1932). Contribution to the theory of the half disc and the wall-like wearer. International Association of Bridge and Structural Engineering, 1, 69–93.
  • El-Sayed, A. K., & Shuraim, A. B. (2016). Size effect on shear resistance of high strength concrete deep beams. Materials and Structures, 49(5), 1871–1882. https://doi.org/10.1617/s11527-015-0619-1
  • Eurocode 2. (2004). Design of concrete structures: Part 1-1 General Rules and Rules for Buildings. British Standards Institution, London, UK, 97. p.
  • Foster, S. J., & Gilbert, R. I. (1996). The design of non-flexural members with normal and high-strength concretes. ACI Structural Journal, 93(1), 3–10.
  • Hsu, T. T. C. (1996). Toward a unified nomenclature for reinforced concrete theory. Journal of Structural Engineering, 122(3), 275–283. https://doi.org/10.1061/(ASCE)0733-9445(1996)122:3(275)
  • Hwang, S. J., & Lee, H. J. (1999). Analytical model for predicting shear strengths of exterior reinforced concrete beam-column joint for seismic resistances. ACI Structural Journal, 96(5), 846–857.
  • Hwang, S. J., & Lee, H. J. (2000). Analytical model for predicting shear strengths of interior reinforced concrete beam-column joint for seismic resistances. ACI Structural Journal, 96(5), 846–857.
  • Hwang, S. J., & Lee, H. J. (2002). Strength prediction for discontinuity regions by softened strut-and-tie model. Journal of Structural Engineering, 128(12), 1519–1526. https://doi.org/10.1061/(ASCE)0733-9445(2002)128:12(1519)
  • Hwang, S. J., Fang, W. H., Lee, H. J., & Yu, H. W. (2001). Analytical model for predicting shear strengths of squat walls. Journal of Structural Engineering, 127(1), 43–50. https://doi.org/10.1061/(ASCE)0733-9445(2001)127:1(43)
  • Hwang, S. J., Lu, W. Y., & Lee, H. J. (2000a). Shear strength prediction for reinforced concrete corbels. ACI Structural Journal, 97(4), 543–552.
  • Hwang, S. J., Lu, W. Y., & Lee, H. J. (2000b). Shear strength prediction for deep beams. ACI Structural Journal, 97(3), 367–376.
  • Hwang, S. J., Tsai, R. J., Lam, W. K., & Moehle, J. P. (2017). Simplification of softened strut-and-tie model for strength prediction of discontinuity regions. ACI Structural Journal, 114(5), 1239–1247. https://doi.org/10.14359/51689787
  • Model Code 2010. International Federation of Structural Concrete, fib Bulletin No. 55, 288 p.
  • IS: 1343. (1980). Code of practice for pre stressed concrete. 1st Revision. Bureau of Indian Standards, New Delhi.
  • IS: 456. (2000). Plain and reinforced concrete, code of practice, 100. 4th Revision. Bureau of Indian Standards. p.
  • Ismail, K. S., Guadagnini, M., & Pilakoutas, K. (2018). Strut-and-tie modelling of reinforced concrete deep beams. Journal of Structural. Engineering., ASCE, 144(2), 1–13.
  • Kani, G. N. J. (1967). How safe are our large reinforced concrete beams? ACI Journal, 64(3), 128–141.
  • Kumar, P. (1978). Short- term deflection of deep beams. Title No. 74-41. ACI Journal, 75(8), 381–383.
  • Lehwalter, N. (1988). Bearing capacity of concrete compression struts in truss-systems, exemplified by the case of short beams [PhD diss.].
  • Leonhardt, F., & Walther, R. (1961). The Stuttgart shear tests. C&CA Translation,11(28), p.134.
  • Lertsrisakulrat, T., Niwa, J., Yanagawa, A., & Matsuo, M. (2002). Concept of concrete compressive fracture energy in RC deep beams without transverse reinforcement. Transactions of the Japan Concrete Institute.23, 119-124.
  • Lu, W. Y. (2006). Shear strength prediction for steel reinforced concrete deep beams. Journal of Constructional Steel Research, 62(10), 933–942. https://doi.org/10.1016/j.jcsr.2006.02.007
  • Lu, W. Y., Hwang, S. J., & Lin, I. J. (2010). Deflection prediction for reinforced concrete deep beams. Computers & Concrete, 7(1), 1–16. https://doi.org/10.12989/cac.2010.7.1.001
  • Manuel, R. F. (1974). Failure of deep beams. ACI Sym. paper, 42, 425–440.
  • Manuel, R. F., Slight, B. W., & Suter, G. T. (1971). Deep beam behavior affected by length and shear span variations. ACI Journal of Proceedings, 68(12), 954–958.
  • Marti, P. (1985). Basic tools of reinforced concrete beam design. ACI Journal of Proceedings, 82(1), 46–56.
  • Matamoros, A. B., & Wong, K., H. (2000). Design of simply supported deep beams using strut-and-tie model. ACI Structural Journal, 100(6), 704–712.
  • Mathey, R. G., & Watstein, D. (1963). Shear strength of beams without web reinforcement containing deformed bars of different yield strengths. ACI Journal of Proceedings, 60(13), 183–207.
  • Mau, S. T., & Hsu, T. T. C. (1987). Shear strength prediction for deep beams with web reinforcement. ACI Structural Journal, 84(6), 513–523.
  • Mau, T., & Hsu, T. C. (1989). Formula for the shear strength of deep beams. ACI Structural Journal, 86(5), 516–523.
  • Mihaylov, B. I. (2015). Five-spring model for complete shear behavior of deep beams. Structural Concrete, 1, 71–83.
  • Mihaylov, B. I., Bentz, E. C., & Collins, M. P. (2013). Two-parameter kinematic theory for shear behavior of deep beams. ACI Structural Journal, 110(3), 447–455.
  • Moody, K., Viest, I., Elstner, R., & Hognestad, E. (1954). Shear strength of reinforced concrete beams part 1-tests of simple beams. ACI J Proc, 51(15), 317–332.
  • Moody, K., Viest, I., Elstner, R., & Hognestad, E. (1955). Shear strength of reinforced concrete beams part 2-tests of restrained beams without web reinforcement. ACI Journal of Proceedings, 51(21), 417–434.
  • Morrow, J., & Viest, I. M. (1957). Shear strength of reinforced concrete frame members without web reinforcement. ACI Journal of Proceedings, 53(47), 833–869.
  • Mphonde, A. G., & Frantz, G. C. (1984). Shear tests of high-and low-strength concrete beams without stirrups. ACI Journal of Proceedings, 81(4), 350–357.
  • Naderpour, H., & Mirrashid, M. (2000a). Shear strength prediction of RC beams using adaptive neuro-fuzzy inference system. Scientia Iranica, 27(2), 657–670.
  • Naderpour, H., & Mirrashid, M. (2020b). Bio-inspired predictive models for shear strength of reinforced concrete beams having steel stirrups. Soft Computing, 24(16), 12587–12597.
  • Nagarajan, P., & Pillai, T. M. M. (2008). Analysis and design of simply supported deep beams using strut and tie method. Advances in Structural Engineering, 11(5), 491–499. https://doi.org/10.1260/136943308786412050
  • Niwa, J., Maekawa, K., & Okamura, H. (1981). Non-linear finite element analysis of deep beams”. Advanced Mechanics of Reinforced Concrete. IABSE Colloquium Delft Netherlands, 34, 625-638.
  • NZS 3101. (2006). Concrete structures standard: Part 1-The Design of concrete structures and Part 2-Commentary. Standards New Zealand, Wellington, New Zealand.
  • Oh, J. K., & Shin, S. W. (2001). Shear strength of reinforced high-strength concrete deep beams. ACI Structural Journal, 98(2), 164–173.
  • Park, J.-W., & Kuchma, D. (2007). Strut-and-tie model analysis for strength prediction of deep beams. ACI Structural Journal, 104(6), 657–666.
  • Pendyala, R. S., & Mendis, P. (2000). Experimental study on shear strength of high-strength concrete beams. ACI Structural Journal, 97(4), 564–571.
  • Quintero-Febres, C. G., Parra-Montesinos, G., & Wight, J. K. (2006). Strength of struts in deep concrete members designed using strut-and-tie method. ACI Structural Journal, 103(4), 577–586.
  • Ramakrishnan, V., & Ananthanarayana, Y. (1968). Ultimate strength of deep beams in shear. ACI Journal of Proceedings, 65(7), 87–98.
  • Rodriguez, J. J., Bianchini, A. C., Viest, I. M., & Kesler, C. E. (1959). Shear strength of two-span continuous reinforced concrete beams. ACI Journal of Proceedings, 55(66), 1089–1130.
  • Rogowsky, D. M., Mac Gregor, J. G., & Ong, S. Y. (1986). Tests of reinforced concrete deep beams. ACI Journal of Proceedings, 83(4), 614–623.
  • Russo, G., Venir, R., & Pauletta, M. (2005). Reinforced concrete deep beams-shear strength model and design formula. ACI Structural Journal, 102 (3), 429–437.
  • Sagaseta, J., & Vollum, R. (2010). Shear design of short-span beams. Magazine of Concrete Research, 62(4), 267–282. https://doi.org/10.1680/macr.2010.62.4.267
  • Sahoo, D. K., Singh, B., & Bhargava, P. (2012). An appraisal of design provisions for bottle-shaped struts. Magazine of Concrete Research, 64(7), 647–656. https://doi.org/10.1680/macr.11.00141
  • Salamy, M. R., Kobayashi, H., & Unjoh, S. (2005). Experimental and analytical study on RC deep beams. Asian Journal of Civil Engineering, 6(5), 409–422.
  • Sandeep, M. S., Nagarajan, P., Shashikala, A. P., & Habeeb, S. A. (2016). Determination of strut efficiency factor for concrete deep beams with and without fibre. Advances in Computational Design, 1(3), 253–264. https://doi.org/10.12989/acd.2016.1.3.253
  • Seliem, H., Hosny, A., Dwairi, H., & Rizkalla, S. (2006). Shear behavior of concrete beams reinforced with MMFX steel without web reinforcement. NC State University, Final Report, Project No. IS-06-08.
  • Shin, S. W., Lee, K. S., Moon, J. I., & Ghosh, S. (1999). Shear strength of reinforced high-strength concrete beams with shear span-to-depth ratios between 1.5 and 2.5. ACI Structural Journal, 96(4), 549–556.
  • Siao, W. B. (1994). Shear strength of short reinforced concrete walls, corbels and deep beams. ACI Structural Journal, 91(2), 123–132.
  • Smith, K., & Vantsiotis, A. (1982). Shear strength of deep beams. ACI J. Proc, 79(3), 201–213.
  • Su, R. K. L., & Looi, D. T. W. (2016). Revisiting unreinforced strut efficiency factor. ACI Structural Journal, 113(2), 301–312.
  • Tan, K. H., Cheng, G. H., & Zhang, N. (2008). Experiment to mitigate size effect on deep beams. Magazine of Concrete Research, 60(10), 709–723. https://doi.org/10.1680/macr.2007.00030
  • Tan, K. H., Kong, F. K., Teng, S., & Weng, L. W. (1997). Effect of web reinforcement on high-strength concrete deep beams. ACI Structural Journal, 94(5), 572–581.
  • Tan, K., & Lu, H. (1999). Shear behavior of large reinforced concrete deep beams and code comparisons. ACI Structural Journal, 96(5), 836–845.
  • Tan, K., Cheng, G., & Cheong, H. (2005). Size effect in shear strength of large beams -behaviour and finite element modeling. Magazine of Concrete Research, 57(8), 497–509. https://doi.org/10.1680/macr.2005.57.8.497
  • Tang, C. Y., & Tan, K. H. (2004). Interactive mechanical model for shear strength of deep beams. Journal of Structural Engineering, 130(10), 1534–1544. https://doi.org/10.1061/(ASCE)0733-9445(2004)130:10(1534)
  • Tuchscherer, R. G., Birrcher, D. B., & Bayrak, O. (2014). Experimental examination of ACI 318 structural and tie modelling provisions, 1–20. ACI Spec. Publ..
  • Vecchio, F. J., & Collins, M. P. (1993). Compression response of cracked reinforced concrete. Journal of Structural Engineering, 119(12), 3590–3610. https://doi.org/10.1061/(ASCE)0733-9445(1993)119:12(3590)
  • Walraven, J., & Lehwalter, N. (1994). Size effects in short beams loaded in shear. ACI Structural Journal, 91(5), 585–593.
  • Warwick, W., & Foster, S. J. (1993). Investigation into the efficiency factor used in non-flexural reinforced concrete member design. University of New South Wales.
  • Watstein, D., & Mathey, R. G. (1958). Strains in beams having diagonal cracks. ACI Journal of Proceedings, 55(46), 717–728.
  • Xie, Y., Ahmad, S. H., Yu, T., Hino, S., & Chung, W. (1994). Shear ductility of reinforced concrete beams of normal and high-strength concrete. ACI Structural J 1994, 91(2), 140–149.
  • Yang, K. H. (2010). Tests on lightweight concrete deep beams. ACI Structural Journal, 107(6), 663–670.
  • Yang, K. H., Chung, H. S., Lee, E. T., & Eun, H. C. (2003). Shear characteristics of high-strength concrete deep beams without shear reinforcements. Engineering Structures, 25(10), 1343–1352. https://doi.org/10.1016/S0141-0296(03)00110-X
  • Zararis, P. D. (2003). Shear compression failure in reinforced concrete deep beams. Journal of Structural Engineering, 129(4), 544–553. https://doi.org/10.1061/(ASCE)0733-9445(2003)129:4(544)
  • Zhang, N., & Tan, K. H. (2007). Size effect in RC deep beams: Experimental investigation and STM verification. Engineering Structures, 29(12), 3241–3254. https://doi.org/10.1016/j.engstruct.2007.10.005
  • Zsutty, T. C. (1968). Beam shear strength prediction by analysis of existing data. ACI Journal of Proceedings, 65(11), 943–951.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.