178
Views
3
CrossRef citations to date
0
Altmetric
Original Articles

Influence of alkali activators on thermo-physical properties of ecofriendly unfired clay bricks from anthill mounds

, , , , ORCID Icon, & show all
Pages 5167-5179 | Received 16 Sep 2020, Accepted 30 Jan 2021, Published online: 16 Feb 2021

References

  • Ackerman, I. L., Teixeira, W. G., Riha, S. J., Lehmann, J., & Fernandes, E. C. (2007). The impact of mound-building termites on surface soil properties in a secondary forest of Central Amazonia. Applied Soil Ecology, 37(3), 267–276. https://doi.org/10.1016/j.apsoil.2007.08.005
  • Ahmed, A. (2015). Compressive strength and microstructure of soft clay soil stabilized with recycled bassanite. Applied Clay Science, 104, 27–35. https://doi.org/10.1016/j.clay.2014.11.031
  • Akinyemi, B. A., Bamidele, A., & Oluwanifemi, A. (2019). Influence of water repellent chemical additive and different curing regimes on dimensional stability and strength of earth bricks from termite mound-clay. Heliyon, 5(1), e01182. https://doi.org/10.1016/j.heliyon.2019.e01182
  • Akinyemi, B. A., Elijah, A., Oluwasegun, A., Akpenpuun, D. T., & Glory, O. (2020). The use of red earth, lateritic soils and quarry dust as an alternative building material in sandcrete block. Scientific African, 7, e00263. https://doi.org/10.1016/j.sciaf.2020.e00263
  • Akinyemi, B. A., Omoniyi, T. E., & Adeyemo, M. O. (2016). Prospects of coir fibre as reinforcement in termite mound clay bricks. Acta Technologica Agriculturae, 19(3), 57–62. https://doi.org/10.1515/ata-2016-0013
  • Akinyemi, B. A., Orogbade, B. O., & Okoro, C. W. (2021). The potential of calcium carbide waste and termite mound soil as materials in the production of unfired clay bricks. Journal of Cleaner Production, 279, 123693. https://doi.org/10.1016/j.jclepro.2020.123693
  • Ameri, F., Shoaei, P., Zareei, S. A., & Behforouz, B. (2019). Geopolymers vs. alkali-activated materials (AAMs): A comparative study on durability, microstructure, and resistance to elevated temperatures of lightweight mortars. Construction and Building Materials, 222, 49–63. https://doi.org/10.1016/j.conbuildmat.2019.06.079
  • Arrigoni, A., Grillet, A. C., Pelosato, R., Dotelli, G., Beckett, C. T., Woloszyn, M., & Ciancio, D. (2017). Reduction of rammed earth's hygroscopic performance under stabilisation: An experimental investigation. Building and Environment, 115, 358–367. https://doi.org/10.1016/j.buildenv.2017.01.034
  • Attanasio, A., Pascali, L., Tarantino, V., Arena, W., & Largo, A. (2018). Alkali-activated mortars for sustainable building solutions: Effect of binder composition on technical performance. Environments, 5(3), 35. https://doi.org/10.3390/environments5030035
  • Awoyera, P., & Adesina, A. (2019). A critical review on application of alkali activated slag as a sustainable composite binder. Case Studies in Construction Materials, 11, e00268. https://doi.org/10.1016/j.cscm.2019.e00268
  • Baldo, J. B., & Dos Santos, W. N. (2002). Phase transitions and their effects on the thermal diffusivity behaviour of some SiO2 polymorphs. Cerâmica, 48(307), 172–177. https://doi.org/10.1590/S0366-69132002000300011
  • Bayer, P., & Rovnanikova, P. (2018). Effect of alkaline activator quantity and temperature of curing on the properties of alkali-activated brick dust [Paper presentation]. IOP Conference Series: Materials Science and Engineering, Vol. 385, No. 1, p. 012004. Conference Centre of the Montjuïc venue of Fira de Barcelona: IOP Publishing. https://doi.org/10.1088/1757-899X/385/1/012004
  • Bodian, S., Faye, M., Sene, N. A., Sambou, V., Limam, O., & Thiam, A. (2018). Thermo-mechanical behavior of unfired bricks and fired bricks made from a mixture of clay soil and laterite. Journal of Building Engineering, 18, 172–179. https://doi.org/10.1016/j.jobe.2018.03.014
  • Brykov, A. S., Danilov, V. V., Korneev, V. I., & Larichkov, A. V. (2002). Effect of hydrated sodium silicates on cement paste hardening. Russian Journal of Applied Chemistry, 75(10), 1577–1579. https://doi.org/10.1023/A:1022251028590
  • BS EN 772-1. (2011). Methods of test for masonry units – Part 1: Determination of compressive strength. BSI.
  • BS EN 772-3. (1998). Methods of test for masonry units. Determination of net volume and percentage of voids of clay masonry units by hydrostatic weighing. BSI.
  • Claggett, N., Surovek, A., Capehart, W., & Shahbazi, K. (2018). Termite mounds: bio inspired examination of the role of material and environment in multifunctional structural forms. Journal of Structural Engineering, 144(7), 02518001. https://doi.org/10.1061/(ASCE)ST.1943-541X.0002043
  • Davies, A. B., Levick, S. R., Asner, G. P., Robertson, M. P., van Rensburg, B. J., & Parr, C. L. (2014). Spatial variability and abiotic determinants of termite mounds throughout a savanna catchment. Ecography, 37(9), 852–862. https://doi.org/10.1111/ecog.00532
  • Diop, M. B., Grutzeck, M. W., & Molez, L. (2011). Comparing the performances of bricks made with natural clay and clay activated by calcination and addition of sodium silicate. Applied Clay Science, 54(2), 172–178. https://doi.org/10.1016/j.clay.2011.08.005
  • El Fgaier, F., Lafhaj, Z., Brachelet, F., Antczak, E., & Chapiseau, C. (2015). Thermal performance of unfired clay bricks used in construction in the north of France: Case study. Case Studies in Construction Materials, 3, 102–111. https://doi.org/10.1016/j.cscm.2015.09.001
  • Gouttefarde, R., Bon, R., Fourcassie, V., Arrufat, P., Haifig, I., Baehr, C., & Jost, C. (2017). Investigating termite nest thermodynamics using a quick-look method and the heat equation. bioRxiv, 161075.
  • Grifa, C., Germinario, C., De Bonis, A., Mercurio, M., Izzo, F., Pepe, F., Bareschino, P., Cucciniello, C., Monetti, V., Morra, V., Cappelletti, P., Cultrone, G., & Langella, A. (2017). Traditional brick productions in Madagascar: From raw material processing to firing technology. Applied Clay Science, 150, 252–266. https://doi.org/10.1016/j.clay.2017.09.033
  • Horpibulsuk, S., Katkan, W., Sirilerdwattana, W., & Rachan, R. (2006). Strength development in cement stabilized low plasticity and coarse grained soils: Laboratory and field study. Soils and Foundations, 46(3), 351–366. https://doi.org/10.3208/sandf.46.351
  • Iftikhar, S., Rashid, K., Haq, E. U., Zafar, I., Alqahtani, F. K., & Khan, M. I. (2020). Synthesis and characterization of sustainable geopolymer green clay bricks: An alternative to burnt clay brick. Construction and Building Materials, 259, 119659. https://doi.org/10.1016/j.conbuildmat.2020.119659
  • Jouquet, P., Lepage, M., & Velde, B. (2002). Termite soil preferences and particle selections: strategies related to ecological requirements. Insectes Sociaux, 49(1), 1–7. https://doi.org/10.1007/s00040-002-8269-z
  • Kandasami, R. K., Borges, R. M., & Murthy, T. G. (2016). Effect of biocementation on the strength and stability of termite mounds. Environmental Geotechnics, 3(2), 99–113. https://doi.org/10.1680/jenge.15.00036
  • Kupaei, R. H., Alengaram, U. J., & Jumaat, M. Z. (2014). The effect of different parameters on the development of compressive strength of oil palm shell geopolymer concrete. The Scientific World Journal, 2014, 1–16. https://doi.org/10.1155/2014/898536
  • Laaroussi, N., Lauriat, G., Garoum, M., Cherki, A., & Jannot, Y. (2014). Measurement of thermal properties of brick materials based on clay mixtures. Construction and Building Materials, 70, 351–361. https://doi.org/10.1016/j.conbuildmat.2014.07.104
  • Log, T., & Gustafsson, S. E. (1995). Transient plane source (TPS) technique for measuring thermal transport properties of building materials. Fire and Materials, 19(1), 43–49. https://doi.org/10.1002/fam.810190107
  • Ma, C., Qin, Z., Zhuang, Y., Chen, L., & Chen, B. (2015). Influence of sodium silicate and promoters on unconfined compressive strength of Portland cement-stabilized clay. Soils and Foundations, 55(5), 1222–1232. https://doi.org/10.1016/j.sandf.2015.09.021
  • Mangat, P., & Lambert, P. (2016). Sustainability of alkali-activated cementitious materials and geopolymers. In Jamal M. Khatib (ed.) Sustainability of construction materials (pp. 459–476). Woodhead Publishing.
  • Masuka, S., Gwenzi, W., & Rukuni, T. (2018). Development, engineering properties and potential applications of unfired earth bricks reinforced by coal fly ash, lime and wood aggregates. Journal of Building Engineering, 18, 312–320. https://doi.org/10.1016/j.jobe.2018.03.010
  • Millogo, Y., Hajjaji, M., & Morel, J. C. (2011). Physical properties, microstructure and mineralogy of termite mound material considered as construction materials. Applied Clay Science, 52(1–2), 160–164. https://doi.org/10.1016/j.clay.2011.02.016
  • Mitchell, J., & Soga, K. (2005). Fundamentals of soil behaviour. Wiley.
  • Ma, Y., & Si, H. (2014). External wall insulation technology research in building technology. Information Technology Journal, 13(1), 78.
  • Nagaraj, H. B., Sravan, M. V., Arun, T. G., & Jagadish, K. S. (2014). Role of lime with cement in long-term strength of compressed stabilized earth blocks. International Journal of Sustainable Built Environment, 3(1), 54–61. https://doi.org/10.1016/j.ijsbe.2014.03.001
  • Ng, S. C., & Low, K. S. (2010). Thermal conductivity of newspaper sandwiched aerated lightweight concrete panel. Energy and Buildings, 42(12), 2452–2456. https://doi.org/10.1016/j.enbuild.2010.08.026
  • Oluyimika, O. M., & Mijinyawa Yahaya, F. S. (2015). An investigation into the thermal properties of termite mound clay applicable to grain silo construction. International Journal of Materials Science and Applications, 4(4), 266–271.
  • Raimondo, M., Dondi, M., Gardini, D., Guarini, G., & Mazzanti, F. (2009). Predicting the initial rate of water absorption in clay bricks. Construction and Building Materials, 23(7), 2623–2630. https://doi.org/10.1016/j.conbuildmat.2009.01.009
  • Rashad, A. M. (2015). A brief on high-volume Class F fly ash as cement replacement – A guide for civil engineer. International Journal of Sustainable Built Environment, 4(2), 278–306. https://doi.org/10.1016/j.ijsbe.2015.10.002
  • Reddy, B. V., & Kumar, P. P. (2010). Embodied energy in cement stabilised rammed earth walls. Energy and Buildings, 42(3), 380–385.
  • Sedira, N., Castro-Gomes, J., & Magrinho, M. (2018). Red clay brick and tungsten mining waste-based alkali-activated binder: Microstructural and mechanical properties. Construction and Building Materials, 190, 1034–1048. https://doi.org/10.1016/j.conbuildmat.2018.09.153
  • Shah, D. U., Bock, M. C., Mulligan, H., & Ramage, M. H. (2016). Thermal conductivity of engineered bamboo composites. Journal of Materials Science, 51(6), 2991–3002. https://doi.org/10.1007/s10853-015-9610-z
  • Shibi, T., & Kamei, T. (2014). Effect of freeze–thaw cycles on the strength and physical properties of cement-stabilised soil containing recycled bassanite and coal ash. Cold Regions Science and Technology, 106, 36–45.
  • Shubbar, A. A., Sadique, M., Kot, P., & Atherton, W. (2019). Future of clay-based construction materials – A review. Construction and Building Materials, 210, 172–187. https://doi.org/10.1016/j.conbuildmat.2019.03.206
  • Thyagaraj, T., Rao, S. M., Sai Suresh, P., & Salini, U. (2012). Laboratory studies on stabilization of an expansive soil by lime precipitation technique. Journal of Materials in Civil Engineering, 24(8), 1067–1075. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000483
  • Vakili, M. V., Chegenizadeh, A., Nikraz, H., & Keramatikerman, M. (2016). Investigation on shear strength of stabilised clay using cement, sodium silicate and slag. Applied Clay Science, 124, 243–251.
  • Whitford, W. G., & Eldridge, D. J. (2013). 12.19 Effects of ants and termites on soil and geomorphological processes. 281–292. Treatise on Geomorphology, Volume 12.
  • Zhang, M., Guo, H., El-Korchi, T., Zhang, G., & Tao, M. (2013). Experimental feasibility study of geopolymer as the next-generation soil stabilizer. Construction and Building Materials, 47, 1468–1478. https://doi.org/10.1016/j.conbuildmat.2013.06.017

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.