237
Views
4
CrossRef citations to date
0
Altmetric
Original Articles

Improving corrosion resistance of reinforcement steel rebars exposed to sulphate attack by the use of electroless nickel coatings

& ORCID Icon
Pages 5180-5195 | Received 25 Mar 2020, Accepted 01 Feb 2021, Published online: 13 Feb 2021

References

  • Abdelmseeh, V. A., Jofriet, J., & Hayward, G. (2008). Sulphate and sulphide corrosion in livestock buildings. I. Concrete deterioration. Biosystems Engineering, 99(3), 372–381. https://doi.org/10.1016/j.biosystemseng.2007.11.002
  • Abubakar, A. F. A., Zuo, X. B., Zou, S., Ayinde, O. O., & Aliyu, A. M. (2019). Electrochemical investigation on the influence of sulfates on chloride-induced corrosion of steel bar in cement-based materials. Journal of Sustainable Cement-Based Materials, 9, 112–126
  • Allahyarzadeh, M. H., Aliofkhazraei, M., Rezvanian, A. R., Torabinejad, V., & Rouhaghdam, A. S. (2016). Ni-W electrodeposited coatings: Characterization, properties and applications. Surface and Coatings Technology, 307, 978–1010. https://doi.org/10.1016/j.surfcoat.2016.09.052
  • Allahyarzadeh, M. H., Aliofkhazraei, M., Rouhaghdam, A. S., & Torabinejad, V. (2016a). Electrodeposition of Ni–W–Al2O3 nanocomposite coating with functionally graded microstructure. Journal of Alloys and Compounds, 666, 217–226. https://doi.org/10.1016/j.jallcom.2016.01.031
  • Allahyarzadeh, M. H., Aliofkhazraei, M., Rouhaghdam, A. S., & Torabinejad, V. (2016b). Gradient electrodeposition of Ni-Cu-W (alumina) nanocomposite coating. Materials & Design, 107, 74–81. https://doi.org/10.1016/j.matdes.2016.06.019
  • Allahyarzadeh, M. H., Aliofkhazraei, M., Rouhaghdam, A. S., & Torabinejad, V. (2016c). Structure and wettability of pulsed electrodeposited Ni-W-Cu-(α-alumina) nanocomposite. Surface and Coatings Technology, 307, 525–533. https://doi.org/10.1016/j.surfcoat.2016.09.036
  • Allahyarzadeh, M. H., Aliofkhazraei, M., Rouhaghdam, A. S., Torabinejad, V., Alimadadi, H., & Ashrafi, A. (2017). Electrodeposition mechanism and corrosion behavior of multilayer nanocrystalline nickel-tungsten alloy. Electrochimica Acta, 258, 883–899. https://doi.org/10.1016/j.electacta.2017.11.139
  • Alonso, M. C., Luna, F. J., & Criado, M. (2019). Corrosion behavior of duplex stainless steel reinforcement in ternary binder concrete exposed to natural chloride penetration. Construction and Building Materials, 199, 385–395. https://doi.org/10.1016/j.conbuildmat.2018.12.036
  • Balaraju, J. N., & Rajam, K. S. (2005). Electroless deposition of Ni–Cu–P, Ni–W–P and Ni–W–Cu–P alloys. Surface and Coatings Technology, 195(2–3), 154–161. https://doi.org/10.1016/j.surfcoat.2004.07.068
  • Bellezze, T., Timofeeva, D., Giuliani, G., & Roventi, G. (2018). Effect of soluble inhibitors on the corrosion behaviour of galvanized steel in fresh concrete. Cement and Concrete Research, 107, 1–10. https://doi.org/10.1016/j.cemconres.2018.02.008
  • Bertolini, L. (2008). Steel corrosion and service life of reinforced concrete structures. Structure and Infrastructure Engineering, 4(2), 123–137. https://doi.org/10.1080/15732470601155490
  • Bragança, M. O., Portella, K. F., Bonato, M. M., & Marino, C. E. (2014). Electrochemical impedance behavior of mortar subjected to a sulfate environment – A comparison with chloride exposure models. Construction and Building Materials, 68, 650–658. https://doi.org/10.1016/j.conbuildmat.2014.06.040
  • Castro, H., Rodríguez, C., Belzunce, F. J., & Canteli, A. F. (2003). Mechanical properties and corrosion behaviour of stainless steel reinforcing bars. Journal of Materials Processing Technology, 143, 134–137.
  • Chen, J., Zhao, G., Matsuda, K., & Zou, Y. (2019). Microstructure evolution and corrosion resistance of Ni–Cu–P amorphous coating during crystallization process. Applied Surface Science, 484, 835–844. https://doi.org/10.1016/j.apsusc.2019.04.142
  • Chen, J., Zou, Y., Matsuda, K., & Zhao, G. (2017). Effect of Cu addition on the microstructure, thermal stability, and corrosion resistance of Ni–P amorphous coating. Materials Letters, 191, 214–217. https://doi.org/10.1016/j.matlet.2016.12.059
  • Criado, M., Bastidas, D. M., Fajardo, S., Fernández-Jiménez, A., & Bastidas, J. M. (2011). Corrosion behaviour of a new low-nickel stainless steel embedded in activated fly ash mortars. Cement and Concrete Composites, 33(6), 644–652. https://doi.org/10.1016/j.cemconcomp.2011.03.014
  • Deus, J. M., Díaz, B., Freire, L., & Nóvoa, X. R. (2014). The electrochemical behaviour of steel rebars in concrete: An electrochemical impedance spectroscopy study of the effect of temperature. Electrochimica Acta, 131, 106–115. https://doi.org/10.1016/j.electacta.2013.12.012
  • Duari, S., Mukhopadhyay, A., Barman, T. K., & Sahoo, P. (2016). Investigation of friction and wear properties of electroless Ni–P–Cu coating under dry condition. Journal of Molecular and Engineering Materials, 04(04), 1640013. https://doi.org/10.1142/S225123731640013X
  • Duari, S., Mukhopadhyay, A., Barman, T. K., & Sahoo, P. (2017). Study of wear and friction of chemically deposited Ni-P-W coating under dry and lubricated condition. Surfaces and Interfaces, 6, 177–189. https://doi.org/10.1016/j.surfin.2017.01.009
  • Duarte, R. G., Castela, A. S., Neves, R., Freire, L., & Montemor, M. F. (2014). Corrosion behavior of stainless steel rebars embedded in concrete: An electrochemical impedance spectroscopy study. Electrochimica Acta, 124, 218–224. https://doi.org/10.1016/j.electacta.2013.11.154
  • Gerengi, H., Kocak, Y., Jazdzewska, A., Kurtay, M., & Durgun, H. (2013). Electrochemical investigations on the corrosion behaviour of reinforcing steel in diatomite-and zeolite-containing concrete exposed to sulphuric acid. Construction and Building Materials, 49, 471–477. https://doi.org/10.1016/j.conbuildmat.2013.08.033
  • Hadipour, A., Rahsepar, M., & Hayatdavoudi, H. (2019). Fabrication and characterisation of functionally graded Ni-P coatings with improved wear and corrosion resistance. Surface Engineering, 35(10), 883–890. https://doi.org/10.1080/02670844.2018.1539295
  • Hewayde, E., Nehdi, M. L., Allouche, E., & Nakhla, G. (2007). Using concrete admixtures for sulphuric acid resistance. Proceedings of the Institution of Civil Engineers – Construction Materials, 160(1), 25–35. https://doi.org/10.1680/coma.2007.160.1.25
  • Karimzadeh, A., Rouhaghdam, A. S., Aliofkhazraei, M., & Miresmaeili, R. (2020). Sliding wear behavior of Ni–Co–P multilayer coatings electrodeposited by pulse reverse method. Tribology International, 141, 105914. https://doi.org/10.1016/j.triboint.2019.105914
  • Li, Z., Luo, M., Mao, H., & Bian, C. (2020). Crystallization and electrochemical corrosion behaviors of nanometer amorphous Ni-P alloys. Materials Research Express, 7(2), 026418. https://doi.org/10.1088/2053-1591/ab769f
  • Liu, G., Zhang, Y., Ni, Z., & Huang, R. (2016). Corrosion behavior of steel submitted to chloride and sulphate ions in simulated concrete pore solution. Construction and Building Materials, 115, 1–5. https://doi.org/10.1016/j.conbuildmat.2016.03.213
  • Liu, H., Viejo, F., Guo, R. X., Glenday, S., & Liu, Z. (2010). Microstructure and corrosion performance of laser-annealed electroless Ni–W–P coatings. Surface and Coatings Technology, 204(9–10), 1549–1555. https://doi.org/10.1016/j.surfcoat.2009.09.074
  • Liu, H., Yao, H. L., Thompson, G. E., Liu, Z., & Harrison, G. (2015). Correlation between structure and properties of annealed electroless Ni–W–P coatings. Surface Engineering, 31(6), 412–419. https://doi.org/10.1179/1743294414Y.0000000422
  • Liu, M., Cheng, X., Li, X., Jin, Z., & Liu, H. (2015). Corrosion behavior of Cr modified HRB400 steel rebar in simulated concrete pore solution. Construction and Building Materials, 93, 884–890. https://doi.org/10.1016/j.conbuildmat.2015.05.073
  • Liu, M., Cheng, X., Li, X., Zhou, C., & Tan, H. (2017). Effect of carbonation on the electrochemical behavior of corrosion resistance low alloy steel rebars in cement extract solution. Construction and Building Materials, 130, 193–201. https://doi.org/10.1016/j.conbuildmat.2016.10.003
  • Loto, C. A. (2016). Electroless nickel plating – A review. Silicon, 8(2), 177–186. https://doi.org/10.1007/s12633-015-9367-7
  • Luo, H., Su, H., Dong, C., & Li, X. (2017). Passivation and electrochemical behavior of 316L stainless steel in chlorinated simulated concrete pore solution. Applied Surface Science, 400, 38–48. https://doi.org/10.1016/j.apsusc.2016.12.180
  • Marcos-Meson, V., Fischer, G., Edvardsen, C., Skovhus, T. L., & Michel, A. (2019). Durability of steel fibre reinforced concrete (SFRC) exposed to acid attack – A literature review. Construction and Building Materials, 200, 490–501. https://doi.org/10.1016/j.conbuildmat.2018.12.051
  • Mukhopadhyay, A., Duari, S., Barman, T. K., & Sahoo, P. (2017). Optimization of friction and wear properties of electroless Ni–P coatings under lubrication using grey fuzzy logic. Journal of the Institution of Engineers (India): Series D, 98(2), 255–268. https://doi.org/10.1007/s40033-016-0133-9
  • Mukhopadhyay, A., & Sahoo, S. (2019). Corrosion protection of reinforcement steel rebars by the application of electroless nickel coatings. Engineering Research Express, 1(1), 015021. https://doi.org/10.1088/2631-8695/ab35f0
  • Oliveira, M. C. L. D., Correa, O. V., Ett, B., Sayeg, I. J., Lima, N. B. D., & Antunes, R. A. (2018). Influence of the tungsten content on surface properties of electroless Ni-W-P coatings. Materials Research, 21(1), e20170567.
  • Sagüés, A. A., Pech-Canul, M. A., & Al-Mansur, A. S. (2003). Corrosion macrocell behavior of reinforcing steel in partially submerged concrete columns. Corrosion Science, 45(1), 7–32. https://doi.org/10.1016/S0010-938X(02)00087-2
  • Sahoo, P., & Das, S. K. (2011). Tribology of electroless nickel coatings – A review. Materials & Design, 32(4), 1760–1775. https://doi.org/10.1016/j.matdes.2010.11.013
  • Salicio-Paz, A., Grande, H., Pellicer, E., Sort, J., Fornell, J., Offoiach, R., Lekka, M., & García-Lecina, E. (2019). Monolayered versus multilayered electroless NiP coatings: impact of the plating approach on the microstructure, mechanical and corrosion properties of the coatings. Surface and Coatings Technology, 368, 138–146. https://doi.org/10.1016/j.surfcoat.2019.04.013
  • Shi, J., & Ming, J. (2017). Influence of defects at the steel-mortar interface on the corrosion behavior of steel. Construction and Building Materials, 136, 118–125. https://doi.org/10.1016/j.conbuildmat.2017.01.007
  • Singh, D. D. N., & Ghosh, R. (2006). Electroless nickel–phosphorus coatings to protect steel reinforcement bars from chloride induced corrosion. Surface and Coatings Technology, 201(1–2), 90–101. https://doi.org/10.1016/j.surfcoat.2005.10.045
  • Tan, Z. Q., & Hansson, C. M. (2008). Effect of surface condition on the initial corrosion of galvanized reinforcing steel embedded in concrete. Corrosion Science, 50(9), 2512–2522. https://doi.org/10.1016/j.corsci.2008.06.035
  • Tang, F., Chen, G., Brow, R. K., Volz, J. S., & Koenigstein, M. L. (2012). Corrosion resistance and mechanism of steel rebar coated with three types of enamel. Corrosion Science, 59, 157–168. https://doi.org/10.1016/j.corsci.2012.02.024
  • Tang, F., Chen, G., Volz, J. S., Brow, R. K., & Koenigstein, M. L. (2012). Microstructure and corrosion resistance of enamel coatings applied to smooth reinforcing steel. Construction and Building Materials, 35, 376–384. https://doi.org/10.1016/j.conbuildmat.2012.04.059
  • Tian, Y., Liu, M., Cheng, X., Dong, C., Wang, G., & Li, X. (2019). Cr-modified low alloy steel reinforcement embedded in mortar for two years: Corrosion result of marine field test. Cement and Concrete Composites, 97, 190–201. https://doi.org/10.1016/j.cemconcomp.2018.12.019
  • Torbati-Sarraf, H., & Poursaee, A. (2018). Corrosion of coupled steels with different microstructures in concrete environment. Construction and Building Materials, 167, 680–687. https://doi.org/10.1016/j.conbuildmat.2018.02.083
  • Touri, S., & Monirvaghefi, S. M. (2020). Fabrication and characterization of functionally graded ni-p electroless coating with variable properties along the surface of the coating. Materials Today Communications, 24, 101203. https://doi.org/10.1016/j.mtcomm.2020.101203
  • Trivedi, A. S., Bhadauria, S. S., & Jain, S. K. (2019). Experimental study of sulphate attack on steel embedded in reinforced concrete. Journal of the Institution of Engineers (India): Series A, 100(3), 387–394. https://doi.org/10.1007/s40030-018-00358-4
  • Vitry, V., & Bonin, L. (2017). Formation and characterization of multilayers borohydride and hypophosphite reduced electroless nickel deposits. Electrochimica Acta, 243, 7–17. https://doi.org/10.1016/j.electacta.2017.04.152
  • Wang, Y. Q., Kong, G., Che, C. S., & Zhang, B. (2018). Inhibitive effect of sodium molybdate on the corrosion behavior of galvanized steel in simulated concrete pore solution. Construction and Building Materials, 162, 383–392. https://doi.org/10.1016/j.conbuildmat.2017.12.035
  • Weishaar, A., Carpenter, M., Loucks, R., Sakulich, A., & Peterson, A. M. (2018). Evaluation of self-healing epoxy coatings for steel reinforcement. Construction and Building Materials, 191, 125–135. https://doi.org/10.1016/j.conbuildmat.2018.09.197
  • Yan, D., Reis, S., Tao, X., Chen, G., Brow, R. K., & Koenigstein, M. (2012). Effect of chemically reactive enamel coating on bonding strength at steel/mortar interface. Construction and Building Materials, 28(1), 512–518. https://doi.org/10.1016/j.conbuildmat.2011.08.075
  • Yu, H. S., Luo, S. F., & Wang, Y. R. (2001). A comparative study on the crystallization behavior of electroless Ni-P and Ni-Cu-P deposits. Surface and Coatings Technology, 148(2–3), 143–148. https://doi.org/10.1016/S0257-8972(01)01345-7
  • Zhao, G., Li, J., Shi, M., Cui, J., & Xie, F. (2020). Degradation of cast-in-situ concrete subjected to sulphate-chloride combined attack. Construction and Building Materials, 241, 117995. https://doi.org/10.1016/j.conbuildmat.2019.117995

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.