316
Views
3
CrossRef citations to date
0
Altmetric
Original Articles

Performance evaluation of sustainable geopolymer concrete produced from ferrochrome slag and silica fume

& ORCID Icon
Pages 5204-5220 | Received 11 Apr 2020, Accepted 01 Feb 2021, Published online: 11 Feb 2021

References

  • ACI Committee 318. (2008). Building code requirements for structural concrete (ACI 318-08) and commentary (p. 473). American Concrete Institute.
  • ACI Committee 363. (1992). State-of-the-art report on high-strength concrete (ACI 363R-92) (p. 473). American Concrete Institute.
  • Adak, D., & Mandal, S. (2019). Strength and Durability Performance of Fly Ash-Based Process-Modified Geopolymer Concrete, J. Mater. Civ. Eng, 31, 4019174.
  • Albitar, M., Visintin, P., Ali, M. S. M., & Drechsler, M. (2015). Assessing behaviour of fresh and hardened geopolymer concrete mixed with class-F fly ash. KSCE Journal of Civil Engineering, 19(5), 1445–1455. https://doi.org/10.1007/s12205-014-1254-z
  • ASTM. (2008). Standard specification for coal fly ash and raw or calcined natural pozzolan for use in concrete. ASTM C618. ASTM.
  • ASTM. (2013). Standard test method for density, absorption, and voids in hardened concrete. ASTM C642. ASTM.
  • Barbosa, V. F. F., & MacKenzie, K. J. D. (2003). Thermal behaviour of inorganic geopolymers and composites derived from sodium polysialate. Materials Research Bulletin, 38(2), 319–331. https://doi.org/10.1016/S0025-5408(02)01022-X
  • BIS (Bureau of Indian standards). (1959). Indian standard methods of tests for strength concrete. IS:516. New Delhi, India: BIS.
  • BIS (Bureau of Indian standards). (1970). Indian standard specification for coarse and fine aggregate from natural sources. IS:383. New Delhi, India: BIS.
  • BIS (Bureau of Indian standards). (1992a). Indian Standard non-destructive testing of concrete - method of test: Rebound hammer. IS:13311-Part 2. New Delhi, India: BIS.
  • BIS (Bureau of Indian standards). (1992b). Nondestructive testing of concrete – Ultrasonic pulse velocity. IS:13311-part 1. New Delhi, India: BIS.
  • BIS (Bureau of Indian standards). (1999). Splitting tensile strength of concrete – method of test. IS:5816. New Delhi, India: BIS.
  • BIS (Bureau of Indian standards). (2002). Methods of test for aggregates for concrete: Part 4. IS:2386. New Delhi, India: BIS.
  • BIS (Bureau of Indian standards). (2003). Silica fume – specification. IS 15388. New Delhi, India: BIS. IS:13311. New Delhi, India: BIS.
  • BIS (Bureau of Indian standards). (2012). Indian standard drinking water – specification, IS:10500. New Delhi, India: BIS.
  • Biswal, K. C., & Sadangi, S. C. (2010). Effect of superplasticizer and silica fume on properties of concrete. Proceedings of International Conference on Advances in Civil Engineering.
  • Bosoaga, A., Masek, O., & Oakey, J. E. (2009). CO2 capture technologies for cement industry. Energy Procedia, 1(1), 133–140. https://doi.org/10.1016/j.egypro.2009.01.020
  • Bravo, M., de Brito, J., Pontes, J., & Evangelista, L. (2015). Mechanical performance of concrete made with aggregates from construction and demolition waste recycling plants. Journal of Cleaner Production, 99, 59–74. https://doi.org/10.1016/j.jclepro.2015.03.012
  • Bucher, R., Diederich, P., Escadeillas, G., & Cyr, M. (2017). Service life of metakaolin-based concrete exposed to carbonation: Comparison with blended cement containing fly ash, blast furnace slag and limestone filler. Cement and Concrete Research, 99(November 2016), 18–29. https://doi.org/10.1016/j.cemconres.2017.04.013
  • Chindaprasirt, P., Chareerat, T., & Sirivivatnanon, V. (2007). Workability and strength of coarse high calcium fly ash geopolymer. Cement and Concrete Composites, 29(3), 224–229. https://doi.org/10.1016/j.cemconcomp.2006.11.002
  • Choo, B. S., & Newman, J. B. (2003). Advanced concrete technology: Constituent materials. Butterworth-Heinemann.
  • Davidovits, J. (1991). Geopolymers: Inorganic polymeric new materials. Journal of Thermal Analysis and Analysis, 37(8), 1633–1656. https://doi.org/10.1007/BF01912193
  • Davidovits, J. (2008). Geopolymer chemistry and applications. Geopolymer Institute.
  • Duxson, P., Fernández-Jiménez, A., Provis, J. L., Lukey, G. C., Palomo, A., & van Deventer, J. S. J. (2007a). Geopolymer technology: The current state of the art. Journal of Materials Science, 42(9), 2917–2933. https://doi.org/10.1007/s10853-006-0637-z
  • Duxson, P., Provis, J. L., Lukey, G. C., & Van Deventer, J. S. J. (2007b). The role of inorganic polymer technology in the development of ‘green concrete’. Cement and Concrete Research, 37(12), 1590–1597. https://doi.org/10.1016/j.cemconres.2007.08.018
  • Etxeberria, M., Mari, A., & Vazquez, E. (2007). Recycled aggregate concrete as structural material. Materials and Structures, 40(5), 529–541. https://doi.org/10.1617/s11527-006-9161-5
  • Ganesan, N., Abraham, R., Raj, S. D., & Sasi, D. (2014). Stress–strain behaviour of confined Geopolymer concrete. Construction and Building Materials, 73, 326–331. https://doi.org/10.1016/j.conbuildmat.2014.09.092
  • Gardner, N. J., & Poon, S. M. (1976). Time and temperature effects on tensile, bond, and compressive strengths. Journal Proceedings, 73(7),405–409.
  • Haddad, R. H., & Alshbuol, O. (2016). Production of geopolymer concrete using natural pozzolan: A parametric study. Construction and Building Materials, 114, 699–707. https://doi.org/10.1016/j.conbuildmat.2016.04.011
  • Harman, C. N. (2007). Innovations in ferro alloys technology in India (pp. 25–37). Infacon Xi, Citeseer.
  • IS:13311 (Part I). (1992). Non-destructive testing of concrete - methods of test (pp. 1–7). Bureau of Indian Satandards.
  • IS:2386 (Part III). (1963). Method of Test for aggregate for concrete. Bureau of Indian Standards. (Reaffirmed 2002).
  • Islam, A., Alengaram, U. J., Jumaat, M. Z., & Bashar, I. I. (2014). The development of compressive strength of ground granulated blast furnace slag-palm oil fuel ash-fly ash based geopolymer mortar. Materials & Design (1980–2015), 56, 833–841. https://doi.org/10.1016/j.matdes.2013.11.080
  • Jena, S., & Panigrahi, R. (2019). Performance assessment of geopolymer concrete with partial replacement of ferrochrome slag as coarse aggregate. Construction and Building Materials, 220, 525–537. https://doi.org/10.1016/j.conbuildmat.2019.06.045
  • Khater, H. M. (2013). Effect of silica fume on the characterization of the geopolymer materials. International Journal of Advanced Structural Engineering, 5(1), 12. https://doi.org/10.1186/2008-6695-5-12
  • Kriven, W. M., Bell, J. L., & Gordon, M. (2003). Microstructure and microchemistry of fully-reacted geopolymers and geopolymer matrix composites. Ceramic Transactions, 153, 227–250.
  • Kupwade-Patil, K., & Allouche, E. N. (2013). Impact of alkali silica reaction on fly ash-based geopolymer concrete. Journal of Materials in Civil Engineering, 25(1), 131–139. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000579
  • Lee, W. K. W., & Van Deventer, J. S. J. (2003). Use of infrared spectroscopy to study geopolymerization of heterogeneous amorphous aluminosilicates. Langmuir, 19(21), 8726–8734. https://doi.org/10.1021/la026127e
  • Limbachiya, M., Meddah, M. S., & Ouchagour, Y. (2012). Use of recycled concrete aggregate in fly-ash concrete. Construction and Building Materials, 27, 439–449. https://doi.org/10.1016/j.conbuildmat.2011.07.023
  • Lotfy, A., & Al-Fayez, M. (2015). Performance evaluation of structural concrete using controlled quality coarse and fine recycled concrete aggregate. Cement and Concrete Composites., 61, 36–43. https://doi.org/10.1016/j.cemconcomp.2015.02.009
  • Majhi, R. K., Nayak, A. N., & Mukharjee, B. B. (2018). Development of sustainable concrete using recycled coarse aggregate and ground granulated blast furnace slag. Construction and Building Materials, 159, 417–430. https://doi.org/10.1016/j.conbuildmat.2017.10.118
  • Memon, F. A., Nuruddin, M. F., & Shafiq, N. (2013). Effect of silica fume on the fresh and hardened properties of fly ash-based self-compacting geopolymer concrete. International Journal of Minerals, Metallurgy, and Materials, 20(2), 205–213. https://doi.org/10.1007/s12613-013-0714-7
  • Meyer, C. (2009). The greening of the concrete industry. Cement and Concrete Composites, 31(8), 601–605. https://doi.org/10.1016/j.cemconcomp.2008.12.010
  • Nath, S. K. (2018). Geopolymerization behavior of ferrochrome slag and fly ash blends. Construction and Building Materials, 181, 487–494. https://doi.org/10.1016/j.conbuildmat.2018.06.070
  • Noushini, A., & Castel, A. (2016). The effect of heat-curing on transport properties of low-calcium fly ash-based geopolymer concrete. Construction and Building Materials, 112, 464–477. https://doi.org/10.1016/j.conbuildmat.2016.02.210
  • Okoye, F. N., Durgaprasad, J., & Singh, N. B. (2015). Mechanical properties of alkali activated flyash/Kaolin based geopolymer concrete. Construction and Building Materials, 98, 685–691. https://doi.org/10.1016/j.conbuildmat.2015.08.009
  • Otsuki, N., Miyazato, S., & Yodsudjai, W. (2003). Influence of recycled aggregate on interfacial transition zone, strength, chloride penetration and carbonation of concrete. Journal of Materials in Civil Engineering, 15(5), 443–451. https://doi.org/10.1061/(ASCE)0899-1561(2003)15:5(443)
  • Palomo, A., & Glasser, F. P. (1992). Chemically-bonded cementitious materials based on metakaolin. British Ceramic. Transactions and Journal, 91(4), 107–112.
  • Palomo, A., Grutzeck, M. W., & Blanco, M. T. (1999). Alkali-activated fly ashes: A cement for the future. Cement and Concrete Research, 29(8), 1323–1329. https://doi.org/10.1016/S0008-8846(98)00243-9
  • Panda, C. R., Mishra, K. K., Panda, K. C., Nayak, B. D., & Nayak, B. B. (2013). Environmental and technical assessment of ferrochrome slag as concrete aggregate material. Construction and Building Materials, 49, 262–271. https://doi.org/10.1016/j.conbuildmat.2013.08.002
  • Panias, D., Giannopoulou, I. P., & Perraki, T. (2007). Effect of synthesis parameters on the mechanical properties of fly ash-based geopolymers. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 301(1–3), 246–254. https://doi.org/10.1016/j.colsurfa.2006.12.064
  • Poon, C. S., Z. H. Shui, Z. H., & Lam, L. (2004). Effect of microstructure of ITZ on compressive strength of concrete prepared with recycled aggregates. Construction and Building Materials, 18(6), 461–468. https://doi.org/10.1016/j.conbuildmat.2004.03.005
  • Posi, P., Teerachanwit, C., Tanutong, C., Limkamoltip, S., Lertnimoolchai, S., Sata, V., & Chindaprasirt, P. (2013). Lightweight geopolymer concrete containing aggregate from recycle lightweight block. Materials & Design (1980–2015), 52, 580–586. https://doi.org/10.1016/j.matdes.2013.06.001
  • Provis, J. L., Lukey, G. C., & van Deventer, J. S. J. (2005). Do geopolymers actually contain nanocrystalline zeolites? A reexamination of existing results. Chemistry of Materials, 17(12), 3075–3085. https://doi.org/10.1021/cm050230i
  • Rangan, B. V. (2008). Fly ash based geopolymer concrete. Research report, Curtin University of Technology.
  • Ren, X., & Zhang, L. (2019). Experimental study of geopolymer concrete produced from waste concrete. Journal of Materials in Civil Engineering, 31(7), 04019114. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002750
  • Ryu, G. S., Lee, Y. B., Koh, K. T., & Chung, Y. S. (2013). The mechanical properties of fly ash-based geopolymer concrete with alkaline activators. Construction and Building Materials, 47(2013), 409–418. https://doi.org/10.1016/j.conbuildmat.2013.05.069
  • Sata, V., Wongsa, A., & Chindaprasirt, P. (2013). Properties of pervious geopolymer concrete using recycled aggregates. Construction and Building Materials, 42, 33–39. https://doi.org/10.1016/j.conbuildmat.2012.12.046
  • Shi, C., Li, Y., Zhang, J., Li, W., Chong, L., & Xie, Z. (2016). Performance enhancement of recycled concrete aggregate–a review. Journal of Cleaner Production, 112, 466–472. https://doi.org/10.1016/j.jclepro.2015.08.057
  • Sofi, M., Van Deventer, J. S. J., Mendis, P. A., & Lukey, G. C. (2007). Engineering properties of inorganic polymer concretes (IPCs). Cement and Concrete Research, 37(2), 251–257. https://doi.org/10.1016/j.cemconres.2006.10.008
  • Tangchirapat, W., Buranasing, R., Jaturapitakkul, C., & Chindaprasirt, P. (2008). Influence of rice husk–bark ash on mechanical properties of concrete containing high amount of recycled aggregates. Construction and Building Materials, 22(8), 1812–1819. https://doi.org/10.1016/j.conbuildmat.2007.05.004
  • Uysal, M., Al-Mashhadani, M. M., Aygörmez, Y., & Canpolat, O. (2018). Effect of using colemanite waste and silica fume as partial replacement on the performance of metakaolin-based geopolymer mortars. Construction and Building Materials, 176, 271–282. https://doi.org/10.1016/j.conbuildmat.2018.05.034
  • Van Deventer, J. S. J., Provis, J. L., Duxson, P., & Brice, D. G. (2010). Chemical research and climate change as drivers in the commercial adoption of alkali activated materials. Waste and Biomass Valorization, 1(1), 145–155. https://doi.org/10.1007/s12649-010-9015-9
  • Van Deventer, J. S. J., Provis, J. L., Duxson, P., & Lukey, G. C. (2007). Reaction mechanisms in the geopolymeric conversion of inorganic waste to useful products. Journal of Hazardous Materials, 139(3), 506–513. https://doi.org/10.1016/j.jhazmat.2006.02.044
  • Xu, H., & Van Deventer, J. S. J. (2000). The geopolymerisation of alumino-silicate minerals. International Journal of Mineral Processing, 59(3), 247–266. https://doi.org/10.1016/S0301-7516(99)00074-5
  • Yang, Z. X., Ha, N. R., Jang, M. S., Hwang, K. H., & Lee, J. K. (2009). The effect of SiO2 on the performance of inorganic sludge-based structural concretes. Journal of Ceramic Processing Research, 10(3), 266–268.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.