266
Views
1
CrossRef citations to date
0
Altmetric
Original Articles

Coupling hardening soil model and Ménard pressuremeter tests to predict pile behavior

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 5221-5240 | Received 10 Nov 2020, Accepted 01 Feb 2021, Published online: 13 Feb 2021

References

  • Abchir, Z., Burlon, S., Frank, R., Habert, J., & Legrand, S. (2016). t–z curves for piles from pressuremeter test results. Géotechnique, 66(2), 137–148. https://doi.org/10.1680/jgeot.15.P.097
  • Angelim, R. R., Cunha, R. P., & Sales, M. M. (2016). Determining the elastic deformation modulus from a compacted earth embankment via laboratory and ménard pressuremeter tests. Soils and Rocks, 39(3), 285–300.
  • Baud, J. P., Gambin, M., & Schlosser, F. (2013). Courbes hyperboliques contrainte–déformation au pressiomètre Ménard autoforé. Proceedings of the 18th International Conference on Soil Mechanics and Geotechnical Engineering. Presses des Ponts et Chaussees, pp. 491–494.
  • Benoît, J., & Howie, J. A. (2014). A view of pressuremeter testing in North America. Soils and Rocks, 37(3), 211–231.
  • Briaud, J. L. (1992). The pressuremeter. A.A. Balkema Publications.
  • Briaud, J. L. (2013). Ménard Lecture - The pressuremeter test: Expanding its use. 18th International Conference on Soil Mechanics and Geotechnical Engineering. ISSMGE, pp. 107–126.
  • Brinkgreve, R. B. J., Engin, E., & Swolfs, W. M. (2014). Plaxis 2D anniversary edition - material models manual. Plaxis bv.
  • Burlon, S., Frank, R., Baguelin, F., Habert, J., & Legrand, S. (2014). Model factor for the bearing capacity of piles from pressuremeter test results – Eurocode 7 approach. Géotechnique, 64(7), 513–525. https://doi.org/10.1680/geot.13.P.061
  • Carter, J. P., Booker, J. R., & Yeung, S. K. (1986). Cavity expansion in cohesive frictional soils. Géotechnique, 36(3), 349–358. https://doi.org/10.1680/geot.1986.36.3.349
  • Mayne, P. W., & Martin, G. K. (1998). Commentary on Marchetti flat dilatometer correlations in soils. Geotechnical Testing Journal, 21(3), 222–239. https://doi.org/10.1520/GTJ10896J
  • Chiu, C. F., & Ng, C. W. W. (2014). Relationships between chemical weathering indices and physical and mechanical properties of decomposed granite. Engineering Geology, 179, 76–89. https://doi.org/10.1016/j.enggeo.2014.06.021
  • Cruz Jr., A. J d. (2016). Instrumentação de fundações estaqueadas. M.Sc. thesis, Department of Civil and Environmental Engineering, Federal University of Goiás (in Portuguese).
  • Cunha, R. P. (1996). A new cavity expansion model to simulate selfboring pressuremeter tests in sand. Soils and Rocks, 19(1), 15–27.
  • Cunha, R. P., Veverka, J., & Santos, R. G. M. (2012). Simulation of laterally loaded foundation groups via Menárd pressuremeter tests. 4th International Conference on Geotechnical and Geophysical Site Characterization – ISC4, Porto de Galinhas, pp. 977–984.
  • Décourt, L. (1989). The standard penetration test, state of the art report. 12th International Conference on Soil Mechanics and Foundation Engineering. A.A. Balkema, pp. 2405–2416.
  • DeJong, J. T., White, D. J., & Randolph, M. F. (2006). Microscale observation and modeling of soil-structure interface behavior using particle image velocimetry. Soils and Foundations, 46(1), 15–28. https://doi.org/10.3208/sandf.46.15
  • Duncan, J. M., & Chang, C. Y. (1970). Nonlinear analysis of stress and strain in soils. Journal of the Soil Mechanics and Foundations Division, 96(5), 1629–1653.
  • Fahey, M., & Carter, J. P. (1993). A finite element study of the pressuremeter test in sand using a nonlinear elastic plastic model. Canadian Geotechnical Journal, 30(2), 348–362. https://doi.org/10.1139/t93-029
  • Fattah, M. Y., Abbas, S. F., & Karim, H. H. (2012). A model for coupled dynamic elastic-plastic analysis of soils. Journal of GeoEngineering, 7(3), 43–50. https://doi.org/10.6310/jog.2012.7(3).2
  • Fattah, M. Y., Salman, F. A., Al-Shakarchi, Y. J., & Raheem, A. M. (2013). Coupled pile-soil interaction analysis in undrained condition. Journal of Central South University, 20(5), 1376–1383. https://doi.org/10.1007/s11771-013-1625-5
  • Fawaz, A., Boulon, M., & Flavigny, E. (2002). Parameters deduced from the pressuremeter test. Canadian Geotechnical Journal, 39(6), 1333–1340. https://doi.org/10.1139/t02-099
  • Fawaz, A., Hagechehade, F., & Farah, E. (2014). A study of the pressuremeter modulus and its comparison to the elastic modulus of soil. Study of Civil Engineering and Architecture (SCEA), 3, 7–15.
  • Fontaine, E., Cunha, R. P., & Carvalho, D. (2005). A simplified analytical manner to obtain soil parameters from Menard pressuremeter tests on unsaturated soils. In M. P. Gambin, J. P. Magnan, and P. Mestat (Eds.), 50 years of pressuremeters international symposium - ISP5 (pp. 289–295). Presses des Ponts et Chaussees.
  • Frank, R., & Zhao, S. R. (1982). Estimation par les paramètres pressiométriques de l’enfocement sous charge axiale de pieux forés dans des sols fins. Bull. Liaison Lab. Ponts Chaussées, 119, 17–24.
  • Gambin, M., Flavigny, E., & Boulon, M. (1996). Le module pressiométrique: Historique et modélisation. XI Colloque Franco-Polonais en Mécanique des Sols et des Roches Appliquée. p. 53–60.
  • Gaone, F. M., Doherty, J. P., & Gourvenec, S. (2019). An optimization strategy for evaluating modified Cam clay parameters using self-boring pressuremeter test data. Canadian Geotechnical Journal, 56(11), 1668–1679. https://doi.org/10.1139/cgj-2018-0385
  • Gavin, K. G., Cadogan, D., & Casey, P. (2009). Shaft capacity of continuous flight auger piles in sand. Journal of Geotechnical and Geoenvironmental Engineering, 135(6), 790–798. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000073
  • Goh, K. H., Jeyatharan, K., & Wen, D. (2012). Understanding the stiffness of soils in Singapore from pressuremeter testing. Geotechnical Engineering Journal of the SEAGS & AGSSEA, 43(4), 56–62.
  • Hardin, B. O., & Drnevich, V. P. (1972). Shear modulus and damping in soils: Design equations and curves. Journal of Soil Mechanics and Foundations Division, 98(SM7), 667–692.
  • Hughes, J. M. O., Wroth, C. P., & Windle, D. (1977). Pressuremeter tests in sands. Géotechnique, 27(4), 455–477. https://doi.org/10.1680/geot.1977.27.4.455
  • Kondner, R. L. (1963). Hyperbolic stress-strain response: Cohesive soils. Journal of the Soil Mechanics and Foundations Division, 89(1), 115–143.
  • Kraft, L. M., Ray, R. P., & Kagawa, T. (1981). Theoretical t–z curves. Journal of the Geotechnical Engineering Division, 107(11), 1543–1561.
  • Lam, C., & Jefferis, S. A. (2011). Critical assessment of pile modulus determination methods. Canadian Geotechnical Journal, 48(10), 1433–1448. https://doi.org/10.1139/t11-050
  • Liu, J., Xiao, H. B., Tang, J., & Li, Q. S. (2004). Analysis of load-transfer of single pile in layered soil. Computers and Geotechnics, 31(2), 127–135. https://doi.org/10.1016/j.compgeo.2004.01.001
  • Machado, R. R. (2020). Ensaios pressiométricos para estimativa de parâmetros de resistência e deformabilidade em um perfil de solo tropical. M.Sc. thesis, Department of Civil and Environmental Engineering, Federal University of Goiás (in Portuguese).
  • Mayne, P. W., & Kulhawy, F. H. (1982). Ko-OCR relationships in soil. Journal of the Geotechnical Engineering Division, 108(6), 851–872.
  • Mayne, P.W., and Martin, G.K. (1998). Commentary on Marchetti Flat Dilatometer Correlations in Soils. Geotechnical Testing Journal, 21(3), 222–239. https://doi.org/10.1520/GTJ10896J
  • Mayne, P. W., & Kulhawy, F. H. (2002). Discussion on: Relationship between Ko and overconsolidation ratio: A theoretical approach. Géotechnique, 53(4), 450–454. https://doi.org/10.1680/geot.2003.53.4.450
  • NF P94-262. (2012). Norme francaise, Justification des ouvrages geotechnicques, norme d’application nationale de l’Eurocode 7. Foundations profondes. doi:ISSN 0335–3931.
  • Ni, P., Song, L., Mei, G., & Zhao, Y. (2017). Generalized nonlinear softening load-transfer model for axially loaded piles. International Journal of Geomechanics, 17(8), 04017019. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000899
  • Poulos, H. G. (2009). Tall buildings and deep foundations – Middle East challenges. In M. Hamza (Ed.), Proceedings of the 17th international conference on soil mechanics and geotechnical engineering (pp. 3173–3205). IOS Press. https://doi.org/10.3233/978-1-60750-031-5-3173
  • Rebolledo, J. F. R., León, R. F. P., & Camapum, J. (2019). Obtaining the mechanical parameters for the hardening soil model of tropical soils in the city of Brasília. Soils and Rocks, 42(1), 61–74. https://doi.org/10.28927/SR.421061
  • Reiffsteck, P. (2009). ISP5 pile prediction revisited. In International foundation congress and equipment - Expo 2009 (pp. 19–26). ASCE. https://doi.org/10.1061/41022(336)7
  • Sales, M. M., & Curado, T. S. (2018). Interaction factor between piles: Limits on using the conventional elastic approach in pile group analysis. Soils and Rocks, 41(1), 049–060. https://doi.org/10.28927/SR.411049
  • Sales, M. M., Small, J. C., & Poulos, H. G. (2010). Compensated piled rafts in clayey soils: Behaviour, measurements and predictions. Canadian Geotechnical Journal, 47(3), 327–345. https://doi.org/10.1139/T09-106
  • Schanz, T., Vermeer, P. A., & Bonnier, P. G. (1999). The hardening soil model: Formulation and verification. Beyond 2000 in computational geotechnics – 10 years of PLAXIS, p. 116.
  • Schmidt, B. (1966). Discussion on: Earth pressure at rest related to stress history. Canadian Geotechnical Journal, 3(4), 239–242. https://doi.org/10.1139/t66-028
  • Surarak, C., Likitlersuang, S., Wanatowski, D., Balasubramaniam, A., Oh, E., & Guan, H. (2012). Stiffness and strength parameters for hardening soil model of soft and stiff Bangkok clays. Soils and Foundations, 52(4), 682–697. https://doi.org/10.1016/j.sandf.2012.07.009
  • Urbaitis, D., Lekstutyte, I., & Gribulis, D. (2016). Overconsolidation ratio determination of cohesive soil. Proceedings of 13th Baltic Sea Geotechnical Conference. Lithuanian Geotechnical Society, Lithuania, pp. 108–113. https://doi.org/10.3846/13bsgc.2016.014
  • Van der Veen, C. (1953). Bearing capacity of a pile. In International Conference of Soil Mechanics and Foundation Engineering. Zurich, p. v.2.
  • Wood, D. M. (1990). Soil behaviour and critical state soil mechanics. Cambridge University Press.
  • Yang, Z. X., Jardine, R. J., Zhu, B. T., Foray, P., & Tsuha, C. H. C. (2010). Sand grain crushing and interface shearing during displacement pile installation in sand. Géotechnique, 60(6), 469–482. https://doi.org/10.1680/geot.2010.60.6.469

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.