276
Views
2
CrossRef citations to date
0
Altmetric
Original Articles

Experimental investigation of linear damping characteristics on granite and red sandstone under dynamic cyclic loading

, , , , &
Pages 5259-5278 | Received 01 Jun 2020, Accepted 09 Feb 2021, Published online: 26 Feb 2021

References

  • Brennan, B. J. (1980). Pulse propagation in media with frequency-dependent Q. Geophysical Research Letters, 7(3), 211–213. https://doi.org/10.1029/GL007i003p00211
  • Brian, J. M. (1991). Frequency dependence of QLg and its relation to crustal anelasticity in the Basin and Range Province. Geophysical Research Letters, 18, 621–624.
  • Brunner, W. M., & Spetzler, H. A. (2002). Contaminant-induced mechanical damping in partially saturated Berea sandstone. Geophysical Research Letters, 29(16), 11–1–11-4. https://doi.org/10.1029/2002GL015455
  • Bieniawski, Z. T., & Bernede, M. J. (1979a). Suggested methods for determining the uniaxial compressive strength and deformability of rock materials 1: Suggested method for determination of the uniaxial compressive strength of rock materials. International Journal of Rock Mechanics and Mining Sciences, 16(2), 137–138. https://doi.org/10.1016/0148-9062(79)91450-5
  • Bieniawski, Z. T., & Bernede, M. J. (1979b). Suggested methods for determining the uniaxial compressive strength and deformability of rock materials 2: Suggested method for determination deformability of rock materials in uniaxial compression. International Journal of Rock Mechanics and Mining Sciences, 16(2), 138–140. https://doi.org/10.1016/0148-9062(79)91451-7
  • Cammarano, F., & Romanowicz, B. (2008). Radial profiles of seismic attenuation in the upper mantle based on physical models. Geophysical Journal International, 175(1), 116–134. https://doi.org/10.1111/j.1365-246X.2008.03863.x
  • Cormier, V. F., Li., & Choy, G. L. (1998). Seismic attenuation of the inner core: Viscoelastic or stratigraphic? Geophysical Research Letters, 25(21), 4019–4022. https://doi.org/10.1029/1998GL900074
  • Cooper, R. F. (2002). Seismic wave attenuation: Energy dissipation in viscoelastic crystalline solids. Reviews in Mineralogy and Geochemistry, 51(1), 253–290. https://doi.org/10.2138/gsrmg.51.1.253
  • Dalton, C. A., Ekström, G., & Dziewonski, A. M. (2009). Global seismological shear velocity and attenuation: A comparison with experimental observations. Earth and Planetary Science Letters, 284(1–2), 65–75. https://doi.org/10.1016/j.epsl.2009.04.009
  • Duda, M., & Renner, J. (2013). The weakening effect of water on the brittle failure strength of sandstone. Geophysical Journal International, 192(3), 1091–1108. https://doi.org/10.1093/gji/ggs090
  • Dai, J. H., Lu, Y. X., & Sun, B. (2016). Experimental study on rock damage under cyclic loading. Water Conservancy and Hydropower Technology, 10, 102–105.
  • Farla, R. J. M., Jackson, I., Gerald, J. D. F., Ulrich, H. F., & Zimmerman, M. E. (2012). Dislocation damping and anisotropic seismic wave attenuation in earth’s upper mantle. Science, 20, 332–335.
  • Gribb, T. T., & Cooper, R. F. (1998). Low-frequency shear attenuation in polycrystalline olivine: Grain boundary diffusion and the physical significance of the Andrade model for viscoelastic rheology. Journal of Geophysical Research: Solid Earth, 103(B11), 27267–27279. https://doi.org/10.1029/98JB02786
  • Guo, M. Q., & Fu, L. Y. (2007). Stress associated coda attenuation from ultrasonic waveform measurements. Geophysical Research Letters, 34, L09307. https://doi.org/10.1029/2007GL029582
  • Gurevich, B., & Lopatnikov, S. L. (1995). Velocity and attenuation of elastic waves in finely layered porous rocks. Geophysical Journal International, 121(3), 933–947. https://doi.org/10.1111/j.1365-246X.1995.tb06449.x
  • Hara, A., & Kiyota, Y. (1977). Dynamic shear tests of soils for seismic analyses. Proceedings of the Ninth International Conference on Soil Mechanics and Foundation Engineering, Tokyo, 2, 247–250.
  • Hardin, B. O., & Drnevich, V. P. (1972). Shear modulus and damping in soils: Measurement and parameter effects. Journal of Soil Mechanics & Foundations Div, 98(sm6), 603–624.
  • He, M. M., Huang, B., Li, N., Zhu, C. H., & Chen, Y. S. (2018). Energy dissipation-based method for fatigue life prediction of rock salt. Rock Mechanics and Rock Engineering, 51(5), 1447–1455. https://doi.org/10.1007/s00603-018-1402-8
  • He, M. M., Li, N., Zhu, C. H., Chen, Y. S., & Wu, H. (2019). Experimental investigation and damage modeling of salt rock subjected to fatigue loading. International Journal of Rock Mechanics and Mining Sciences, 114, 17–23. https://doi.org/10.1016/j.ijrmms.2018.12.015
  • He, M. M., Zhang, Z. Q., Zheng, J., Chen, F. F., & Li, N. (2020). A new perspective on the constant m(i) of the Hoek-Brown failure criterion and a new model for determining the residual strength of rock. Rock Mechanics and Rock Engineering, 53(9), 3953–3967. https://doi.org/10.1007/s00603-020-02164-6
  • Hu, D. W., Zhou, H., Zhang, F., & Shao, J. F. (2010). Evolution of poroelastic properties and permeability in damaged sandstone. International Journal of Rock Mechanics and Mining Sciences, 47(6), 962–973. https://doi.org/10.1016/j.ijrmms.2010.06.007
  • Huang, X. J., Fu, X. M., & Shen, Z. (2016). Study on dynamic parameters of rock under triaxial cyclic loading. China Testing, 42(7), 117–122.
  • Jackson, I., & Faul, U. H. (2010). Grainsize-sensitive viscoelastic relaxation in olivine: Towards a robust laboratory-based model for seismological application. Physics of the Earth and Planetary Interiors, 183(1-2), 151–163. https://doi.org/10.1016/j.pepi.2010.09.005
  • Jackson, I., Faul, U. H., Fitz Gerald, J. D., & Morris, S. J. S. (2006). Contrasting viscoelastic behavior of melt-free and melt-bearing olivine: Implications for the nature of grain-boundary sliding. Materials Science and Engineering: A, 442(1–2), 170–174. https://doi.org/10.1016/j.msea.2006.01.136
  • Jiang, R., Dai, F., Liu, Y., Li, A. (2021) Fast marching method for microseismic source location in cavern-containing rockmass: performance analysis and engineering application, Engineering, Available online 21 January 2021. https://doi.org/10.1016/j.eng.2020.10.019
  • Johnston, D. H., & Toksoz, N. (1981). Attenuation: A state-of-art summary. In T. Johnston (Ed.), Seismic wave attenuation, S.E.G. (Reprint Series 12, pp. 123–135). SEG.
  • Julien, B., Clarisse, B., Daniel, B., Pascale, S., & Perroud, H. (2012). Laboratory monitoring of P waves in partially saturated sand. Geophysical Journal International, 191, 1152–1170.
  • Kim, D. S., Stokoe, K. H., & Roesset, J. M. (1991). Characterization of material damping of soils using resonant column and torsional shear tests [Paper presentation]. Proceedings of the Fifth International Conference, Soil Dyn Earthq Eng Karlsruhe, pp. 189–200.
  • Kokusho, T. (1987). In-situ dynamic soil properties and their evaluation. Proceedings of the Eighth Asian Regional Conference Soil Mech and Foundation Engineering, 2, 215–240.
  • Leary, P. C. (1995). The cause of frequency-dependent seismic absorption in crustal rock. Geophysical Journal International, 122(1), 143–151. https://doi.org/10.1111/j.1365-246X.1995.tb03542.x
  • Li, X., Gong, F., Tao, M., Dong, L., Du, K., Ma, C., Zhou, Z., & Yin, T. (2017). Failure mechanism and coupled static-dynamic loading theory in deep hard rock mining: A review. Journal of Rock Mechanics and Geotechnical Engineering, 9(4), 767–782. https://doi.org/10.1016/j.jrmge.2017.04.004
  • Liu, E., & He, S. (2012). Effects of cyclic dynamic loading on the mechanical properties of intact rock samples under confining pressure conditions. Engineering Geology, 125, 81–91. https://doi.org/10.1016/j.enggeo.2011.11.007
  • Müller, T. M., Lambert, G., & Gurevich, B. (2007). Dynamic permeability of porous rocks and its seismic signatures. Geophysics, 72(5), E149–E15. https://doi.org/10.1190/1.2749571
  • Müller, T. M., Toms-Stewart, J., & Wenzlau, F. (2008). Velocity-saturation relation for partially saturated rocks with fractal pore fluid distribution. Geophysical Research Letters, 35, L09306. https://doi.org/10.1029/2007GL033074
  • Nishi, K., Ishiguro, T., & Kudo, K. (1989). Dynamic properties of weathered sedimentary soft rocks. Soils and Foundations, 29(3), 67–82. https://doi.org/10.3208/sandf1972.29.3_67
  • Nishi, K., Kokusho, T., & Esashi, Y. (1983). Dynamic shear modulus and damping ratio of rocks for a wide confining pressure range. Proceedings of the Fifth Congress International Society for Rock Mechanics, Melbourne, 2, 223–226.
  • Oreshin, S. I., & Vinnik, L. P. (2004). Heterogeneity and anisotropy of seismic attenuation in the inner core. Geophysical Research Letters, 31, L02613. https://doi.org/10.1029/2003GL018591
  • Phillips, W. S., & Richard, J. (2008). Stead attenuation of Lg in the western US using the USArray. Geophysical Research Letters, 35, L07307. https://doi.org/10.1029/2007GL032926
  • Pointer, T., Liu, E., & Hudson, J. A. (2000). Seismic wave propagation in cracked porous media. Geophysical Journal International, 142(1), 199–231. https://doi.org/10.1046/j.1365-246x.2000.00157.x
  • Pride, S. R., Berryman, J. G., & Harris, J. M. (2004). Seismic attenuation due to wave-induced flow. Journal of Geophysical Research, 109, B01201. https://doi.org/10.1029/2003JB00263
  • Rubino, J. G., & Holliger, K. (2012). Seismic attenuation and velocity dispersion in heterogeneous partially saturated porous rocks. Geophysical Journal International, 188(3), 1088–1102. https://doi.org/10.1111/j.1365-246X.2011.05291.x
  • Rubino, J. G., Ravazzoli, C. L., & Santos, J. E. (2009). Equivalent viscoelastic solids for heterogeneous fluid-saturated porous rocks. Geophysics, 74(1), N1–N13. https://doi.org/10.1190/1.3008544
  • Rubino, J. G., Velis, D. R., & Sacchi, M. D. (2011). Numerical analysis of wave-induced fluid flow effects on seismic data: Application to monitoring of CO2 storage at the Sleipner Field. Journal of Geophysical Research, 116, B03306.
  • Skelton, R. P., & Webster, G. A. (2009). Extensometer probe indentation during low-cycle fatigue of plain and circumferentially notched cylindrical bars at 550 °C. International Journal of Fatigue, 31(10), 1505–1516. https://doi.org/10.1016/j.ijfatigue.2009.05.008
  • Spencer, J. W. (1981). Stress relaxations at low frequencies in fluid-saturated rocks: Attenuation and modulus dispersion. Journal of Geophysical Research, 86(B3), 1803–1812. https://doi.org/10.1029/JB086iB03p01803
  • Tan, B. H., Jackson, I., & Fitz Gerald, J. D. (2001). High-temperature viscoelasticity of fine-grained polycrystalline olivine. Physics and Chemistry of Minerals, 28(9), 641–664. https://doi.org/10.1007/s002690100189
  • Tatsuoka, F., & Shibuya, S. (1992). Deformation characteristics of soils and rocks from field and laboratory tests. Report of the Institute of Industrial Science, University of Tokyo, 235, 136.
  • Tittmann, B. R., Nadler, H., Clark, V. A., Ahlberg, L. A., & Spencer, T. W. (1981). Frequency dependence of seismic dissipation in saturated rocks. Geophysical Research Letters, 8(1), 36–38. https://doi.org/10.1029/GL008i001p00036
  • Tompkins, M. J., & Christensen, N. I. (2001). Ultrasonic P- and S-wave attenuation in oceanic basalt. Geophysical Journal International, 145(1), 172–186. https://doi.org/10.1046/j.0956-540x.2001.01354.x
  • Toms-Stewart, J., Müller, T. M., Gurevich, B., & Paterson, L. (2009). Statistical characterization of gas-patch distributions in partially saturated rocks. Geophysics, 74(2), WA51–WA64. https://doi.org/10.1190/1.3073007
  • Vassily, M., Maxim, L., & Boris, G. (2016). Validation of the laboratory measurements at seismic frequencies using the Kramers-Kronig relationship. Geophysical Research Letters, 43, 4986–4991.
  • Villaescusa, E., Thompson, A., & Windsor, C. (2019). Probabilistic estimate of rock mass static and dynamic demands for underground excavation stabilisation. Journal of Rock Mechanics and Geotechnical Engineering, 11(3), 481–493. https://doi.org/10.1016/j.jrmge.2018.08.009
  • Vinci, C., Renner, J., & Steeb, H. (2014). On attenuation of seismic waves associated with flow in fractures. Geophysical Research Letters, 41(21), 7515–7523. https://doi.org/10.1002/2014GL061634
  • Wang, J. P., Li, Y. S., & Zhang, C. (2015). Experimental study on the mechanical behavior of soft rock under cyclic loading. Science Technology and Engineering, 15(29), 183–188.
  • Wang, Y., Ma, L., Fan, P., & Chen, Y. (2016). A fatigue damage model for rock salt considering the effects of loading frequency and amplitude. International Journal of Mining Science and Technology, 26(5), 955–958. https://doi.org/10.1016/j.ijmst.2016.05.054
  • Xie, D. Y. (1988). Soil dynamics. Xi'an Jiaotong University Press.
  • Yang, F. J., Hu, D. W., Zhou, H., & Lu, J. J. (2020). Physico-mechanical behaviors of granite under coupled static and dynamic cyclic loadings. Rock Mechanics and Rock Engineering, 53(5), 2157–2173. https://doi.org/10.1007/s00603-019-02040-y
  • Yang, S. Q., Ranjith, P., Huang, Y. H., Yin, P. F., Jing, H. W., Gui, Y. L., & Yu, Q. L. (2015). Sandstone under triaxial cyclic loading. Geophysical Journal International, 201(2), 662–682. https://doi.org/10.1093/gji/ggv023
  • Yang, S. Q., Tian, W., & Ranjith, P. (2017). Experimental investigation on deformation failure characteristics of crystalline marble under triaxial cyclic loading. Rock Mechanics and Rock Engineering, 50(11), 2871–2889. https://doi.org/10.1007/s00603-017-1262-7
  • Yoshinaka, R., Tran, T. V., & Osada, M. (1997). Mechanical behavior of soft rocks under triaxial cyclic loading conditions. International Journal of Rock Mechanics and Mining Sciences, 34(3–4), 354.e1–354.e14.
  • Zhu, J. B., Liao, Z. Y., & Tang, C. A. (2016). Numerical SHPB tests of rocks under combined static and dynamic loading conditions with application to dynamic behavior of rocks under in situ stresses. Rock Mechanics and Rock Engineering, 49(10), 3935–3946. https://doi.org/10.1007/s00603-016-0993-1
  • Zhu, Z. D., Sun, L. Z., & Wang, M. Y. (2010). Damping ratio experiment and mesomechanical analysis of deformation failure mechanism on rock under different frequency cyclic loadings. Rock and Soil Mechanics, 31(Suppl 1), 8–12.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.