744
Views
14
CrossRef citations to date
0
Altmetric
Original Articles

Effects of alternative ecological fillers on the mechanical, durability, and microstructure of fly ash-based geopolymer mortar

, &
Pages 5877-5900 | Received 12 Nov 2020, Accepted 28 Apr 2021, Published online: 13 May 2021

References

  • Aarthi, K., & Arunachalam, K. (2018). Durability studies on fibre reinforced self compacting concrete with sustainable wastes. Journal of Cleaner Production, 174, 247–255. https://doi.org/10.1016/j.jclepro.2017.10.270
  • Abdulkareem, O. A., Mustafa Al Bakri, A. M., Kamarudin, H., Khairul Nizar, I., & Saif, A. A. (2014). Effects of elevated temperatures on the thermal behavior and mechanical performance of fly ash geopolymer paste, mortar and lightweight concrete. Construction and Building Materials, 50, 377–387. https://doi.org/10.1016/j.conbuildmat.2013.09.047
  • Aliabdo, A. A., Abd Elmoaty, A. E. M., & Salem, H. A. (2016). Effect of cement addition, solution resting time and curing characteristics on fly ash based geopolymer concrete performance. Construction and Building Materials, 123, 581–593. https://doi.org/10.1016/j.conbuildmat.2016.07.043
  • Al-Mashhadani, M. M., Canpolat, O., Aygörmez, Y., Uysal, M., & Erdem, S. (2018). Mechanical and microstructural characterization of fiber reinforced fly ash based geopolymer composites. Construction and Building Materials, 167, 505–513. https://doi.org/10.1016/j.conbuildmat.2018.02.061
  • Alyamac, K. E., Ghafari, E., & Ince, R. (2017). Development of eco-efficient self-compacting concrete with waste marble powder using the response surface method. Journal of Cleaner Production, 144, 192–202. https://doi.org/10.1016/j.jclepro.2016.12.156
  • Ameri, F., Shoaei, P., Zareei, S. A., & Behforouz, B. (2019). Geopolymers vs. alkali-activated materials (AAMs): A comparative study on durability, microstructure, and resistance to elevated temperatures of lightweight mortars. Construction and Building Materials, 222, 49–63. https://doi.org/10.1016/j.conbuildmat.2019.06.079
  • Amudhavalli, N. K., Sivasankar, S., Shunmugasundaram, M., & Praveen Kumar, A. (2020). Characteristics of granite dust concrete with M − sand as replacement of fine aggregate composites. Materials Today: Proceedings, 27, 1401–1406. https://doi.org/10.1016/j.matpr.2020.02.771
  • André, A., de Brito, J., Rosa, A., & Pedro, D. (2014). Durability performance of concrete incorporating coarse aggregates from marble industry waste. Journal of Cleaner Production, 65, 389–396. https://doi.org/10.1016/j.jclepro.2013.09.037
  • Bacarji, E., Toledo Filho, R. D., Koenders, E. A. B., Figueiredo, E. P., & Lopes, J. L. M. P. (2013). Sustainability perspective of marble and granite residues as concrete fillers. Construction and Building Materials, 45, 1–10. https://doi.org/10.1016/j.conbuildmat.2013.03.032
  • Bayiha, B. N., Billong, N., Yamb, E., Kaze, R. C., & Nzengwa, R. (2019). Effect of limestone dosages on some properties of geopolymer from thermally activated halloysite. Construction and Building Materials, 217, 28–35. https://doi.org/10.1016/j.conbuildmat.2019.05.058
  • Bernal, S. A., Bejarano, J., Garzón, C., Mejía de Gutiérrez, R., Delvasto, S., & Rodríguez, E. D. (2012). Performance of refractory aluminosilicate particle/fiber-reinforced geopolymer composites. Composites Part B: Engineering, 43(4), 1919–1928. https://doi.org/10.1016/j.compositesb.2012.02.027
  • Billong, N., Melo, U., Njopwouo, D., Louvet, F., & Bonnet, J. (2013). Physicochemical characteristics of some cameroonian pozzolans for use in sustainable cement like materials. Materials Sciences and Applications, 4(1), 14–21. https://doi.org/10.4236/msa.2013.41003
  • Binici, H., & Aksogan, O. (2018). Durability of concrete made with natural granular granite, silica sand and powders of waste marble and basalt as fine aggregate. Journal of Building Engineering, 19, 109–121. https://doi.org/10.1016/j.jobe.2018.04.022
  • Binici, H., Yardim, Y., Aksogan, O., Resatoglu, R., Dincer, A., & Karrpuz, A. (2020). Durability properties of concretes made with sand and cement size basalt. Sustainable Materials and Technologies, 23, e00145. https://doi.org/10.1016/j.susmat.2019.e00145
  • Celik, A., Yilmaz, K., Canpolat, O., Al-Mashhadani, M. M., Aygörmez, Y., & Uysal, M. (2018). High-temperature behavior and mechanical characteristics of boron waste additive metakaolin based geopolymer composites reinforced with synthetic fibers. Construction and Building Materials, 187, 1190–1203. https://doi.org/10.1016/j.conbuildmat.2018.08.062
  • Colangelo, F., Roviello, G., Ricciotti, L., Ferrándiz-Mas, V., Messina, F., Ferone, C., Tarallo, O., Cioffi, R., & Cheeseman, C. R. (2018). Mechanical and thermal properties of lightweight geopolymer composites. Cement and Concrete Composites, 86, 266–272. https://doi.org/10.1016/j.cemconcomp.2017.11.016
  • Corinaldesi, V., Moriconi, G., & Naik, T. R. (2010). Characterization of marble powder for its use in mortar and concrete. Construction and Building Materials, 24(1), 113–117. https://doi.org/10.1016/j.conbuildmat.2009.08.013
  • Davidovits, J. (1989). Geopolymers and geopolymeric materials. Journal of Thermal Analysis and Analysis, 35(2), 429–441. https://doi.org/10.1007/BF01904446
  • Davidovits, J. (1993). Geopolymer cement to minimize carbon-dioxde greenhouse-warming. Ceramic Transactions, 37, 165–182.
  • Davidovits, J. (2008). Geopolymer chemistry and applications, Vol. 171. Institut Geopolymere.
  • De Silva, P., & Sagoe-Crenstil, K. (2008). Medium-term phase stability of Na2O–Al2O3–SiO2–H2O geopolymer systems. Cement and Concrete Research, 38(6), 870–876. https://doi.org/10.1016/j.cemconres.2007.10.003
  • Dobiszewska, M., Pichór, W., & Szołdra, P. (2019). Effect of basalt powder addition on properties of mortar. MATEC Web of Conferences, 262, 06002. https://doi.org/10.1051/matecconf/201926206002
  • Duxson, P., Lukey, G. C., & van Deventer, J. S. J. (2007). Physical evolution of Na-geopolymer derived from metakaolin up to 1000 °C. Journal of Materials Science, 42(9), 3044–3054. https://doi.org/10.1007/s10853-006-0535-4
  • Embong, R., Kusbiantoro, A., Shafiq, N., & Nuruddin, M. F. (2016). Strength and microstructural properties of fly ash based geopolymer concrete containing high-calcium and water-absorptive aggregate. Journal of Cleaner Production, 112, 816–822. https://doi.org/10.1016/j.jclepro.2015.06.058
  • Görhan, G., Aslaner, R., & Şinik, O. (2016). The effect of curing on the properties of metakaolin and fly ash-based geopolymer paste. Composites Part B: Engineering, 97, 329–335. https://doi.org/10.1016/j.compositesb.2016.05.019
  • Hiremath, P. N., & Yaragal, S. C. (2018). Performance evaluation of reactive powder concrete with polypropylene fibers at elevated temperatures. Construction and Building Materials, 169, 499–512. https://doi.org/10.1016/j.conbuildmat.2018.03.020
  • Horszczaruk, E. (2005). Abrasion resistance of high-strength concrete in hydraulic structures. Wear, 259(1–6), 62–69. https://doi.org/10.1016/j.wear.2005.02.079
  • Hunter, E., Korayem, A. H., Pan, Z., Duan, W. H., Zhao, X.-L., Collins, F., Sanjayan, J. (2012). The properties of fly ash based geopolymer mortars made with dune sand. In ACUN-6 2012: Proceedings of the 6th International Composites Conference on Composites and Nanocomposites in Civil, Offshore and Mining Infrastructure, 399–404.
  • İlkentapar, S., Atiş, C. D., Karahan, O., & Görür Avşaroğlu, E. B. (2017). Influence of duration of heat curing and extra rest period after heat curing on the strength and transport characteristic of alkali activated class F fly ash geopolymer mortar. Construction and Building Materials, 151, 363–369. https://doi.org/10.1016/j.conbuildmat.2017.06.041
  • Imbabi, M., Carrigan, C., & Mckenna, S. (2012). Trends and developments in green cement and concrete technology. International Journal of Sustainable Built Environment, 1(2), 194–216. https://doi.org/10.1016/j.ijsbe.2013.05.001
  • Junaid, M. T., Khennane, A., & Kayali, O. (2015). Performance of fly ash based geopolymer concrete made using non-pelletized fly ash aggregates after exposure to high temperatures. Materials and Structures, 48(10), 3357–3365. https://doi.org/10.1617/s11527-014-0404-6
  • Khan, M. Z. N., Shaikh, F., Uddin, A., Hao, Y., & Hao, H. (2016). Synthesis of high strength ambient cured geopolymer composite by using low calcium fly ash. Construction and Building Materials, 125, 809–820. https://doi.org/10.1016/j.conbuildmat.2016.08.097
  • Khaneghahi, M. H., Najafabadi, E. P., Shoaei, P., & Oskouei, A. V. (2018). Effect of intumescent paint coating on mechanical properties of FRP bars at elevated temperature. Polymer Testing, 71, 72–86. https://doi.org/10.1016/j.polymertesting.2018.08.020
  • Kong, D. L. Y., & Sanjayan, J. G. (2008). Damage behavior of geopolymer composites exposed to elevated temperatures. Cement and Concrete Composites, 30(10), 986–991. https://doi.org/10.1016/j.cemconcomp.2008.08.001
  • Kong, D. L. Y., Sanjayan, J. G., & Sagoe-Crentsil, K. (2007). Comparative performance of geopolymers made with metakaolin and fly ash after exposure to elevated temperatures. Cement and Concrete Research, 37(12), 1583–1589. https://doi.org/10.1016/j.cemconres.2007.08.021
  • Koshy, N., Dondrob, K., Hu, L., Wen, Q., & Meegoda, J. (2019). Synthesis and characterization of geopolymers derived from coal gangue, fly ash and red mud. Construction and Building Materials, 206, 287–296. https://doi.org/10.1016/j.conbuildmat.2019.02.076
  • Lahoti, M., Wong, K. K., Tan, K. H., & Yang, E.-H. (2018). Effect of alkali cation type on strength endurance of fly ash geopolymers subject to high temperature exposure. Materials & Design, 154, 8–19. https://doi.org/10.1016/j.matdes.2018.05.023
  • Laibao, L., Zhang, Y., Zhang, W., Liu, Z., & Lihua, Z. (2013). Investigating the influence of basalt as mineral admixture on hydration and microstructure formation mechanism of cement. Construction and Building Materials, 48, 434–440. https://doi.org/10.1016/j.conbuildmat.2013.07.021
  • Latawiec, R., Woyciechowski, P., & Kowalski, K. (2018). Sustainable Concrete Performance—CO2-Emission. Environments, 5(2), 27. https://doi.org/10.3390/environments5020027
  • Ma, Y., Hu, J., & Ye, G. (2013). The pore structure and permeability of alkali activated fly ash. Fuel, 104, 771–780. https://doi.org/10.1016/j.fuel.2012.05.034
  • Martins, P., Brito, J., Rosa, A., & Pedro, D. (2014). Mechanical performance of concrete with incorporation of coarse waste from the marble industry. Materials Research, 17(5), 1093–1101. https://doi.org/10.1590/1516-1439.210413
  • Mashaly, A., El-Kaliouby, B., Shalaby, B., Gohary, A., & Rashwan, M. (2016). Effects of marble sludge incorporation on the properties of cement composites and concrete paving blocks. Journal of Cleaner Production, 112, 731–741. https://doi.org/10.1016/j.jclepro.2015.07.023
  • Mehta, A., & Siddique, R. (2017). Strength, permeability and micro-structural characteristics of low-calcium fly ash based geopolymers. Construction and Building Materials, 141, 325–334. https://doi.org/10.1016/j.conbuildmat.2017.03.031
  • Meyer, C. (2009). The greening of the concrete industry. Cement and Concrete Composites, 31(8), 601–605. https://doi.org/10.1016/j.cemconcomp.2008.12.010
  • Musmar, M., & Alhadi, N. (2008). Relationship between ultrasonic pulse velocity and standard concrete cube crushing strength. Journal of Engineering Sciences, Assiut University, 36, 51–59.
  • Najafabadi, E. P., Oskouei, A. V., Khaneghahi, M. H., Shoaei, P., & Ozbakkaloglu, T. (2019). The tensile performance of FRP bars embedded in concrete under elevated temperatures. Construction and Building Materials, 211, 1138–1152. https://doi.org/10.1016/j.conbuildmat.2019.03.239
  • Narimani Zamanabadi, S., Zareei, S. A., Shoaei, P., & Ameri, F. (2019). Ambient-cured alkali-activated slag paste incorporating micro-silica as repair material: Effects of alkali activator solution on physical and mechanical properties. Construction and Building Materials, 229, 116911. https://doi.org/10.1016/j.conbuildmat.2019.116911
  • Natali, A., Manzi, S., & Bignozzi, M. C. (2011). Novel fiber-reinforced composite materials based on sustainable geopolymer matrix. Procedia Engineering, 21, 1124–1131. https://doi.org/10.1016/j.proeng.2011.11.2120
  • Nath, S. K., Maitra, S., Mukherjee, S., & Kumar, S. (2016). Microstructural and morphological evolution of fly ash based geopolymers. Construction and Building Materials, 111, 758–765. https://doi.org/10.1016/j.conbuildmat.2016.02.106
  • Nath, P., & Sarker, P. K. (2014). Effect of GGBFS on setting, workability and early strength properties of fly ash geopolymer concrete cured in ambient condition. Construction and Building Materials, 66, 163–171. https://doi.org/10.1016/j.conbuildmat.2014.05.080
  • Nikolić, V., Komljenović, M., Baščarević, Z., Marjanović, N., Miladinović, Z., & Petrović, R. (2015). The influence of fly ash characteristics and reaction conditions on strength and structure of geopolymers. Construction and Building Materials, 94, 361–370. https://doi.org/10.1016/j.conbuildmat.2015.07.014
  • Obonyo, E., Kamseu, E., Lemougna, P., Tchamba, A. B., Melo, U., & Leonelli, C. (2014). A sustainable approach for the geopolymerization of natural iron-rich aluminosilicate materials. Sustainability, 6(9), 5535–5553. https://doi.org/10.3390/su6095535
  • Olawale, M. (2013). Syntheses, characterization and binding strength of geopolymers: A review. International Journal of Materials Science and Applications, 2, 185–193. https://doi.org/10.11648/j.ijmsa.20130206.14
  • Provis, J. L. (2014). Geopolymers and other alkali activated materials: why, how, and what? Materials and Structures, 47(1–2), 11–25. https://doi.org/10.1617/s11527-013-0211-5
  • Qian, J., & Song, M. (2015). Study on influence of limestone powder on the fresh and hardened properties of early age metakaolin based geopolymer. In Calcined Clays for Sustainable Concrete. (pp. 253–259). Springer.
  • Rana, A., Kalla, P., & Csetenyi, L. J. (2015). Sustainable use of marble slurry in concrete. Journal of Cleaner Production, 94, 304–311. https://doi.org/10.1016/j.jclepro.2015.01.053
  • Rickard, W. D. A., & van Riessen, A. (2014). Performance of solid and cellular structured fly ash geopolymers exposed to a simulated fire. Cement and Concrete Composites, 48, 75–82. https://doi.org/10.1016/j.cemconcomp.2013.09.002
  • Ryu, G. S., Lee, Y. B., Koh, K. T., & Chung, Y. S. (2013). The mechanical properties of fly ash-based geopolymer concrete with alkaline activators. Construction and Building Materials, 47, 409–418. https://doi.org/10.1016/j.conbuildmat.2013.05.069
  • Sakkas, K., Sofianos, A., Nomikos, P., & Panias, D. (2015). Behaviour of passive fire protection K-geopolymer under successive severe fire incidents. Materials (Basel, Switzerland), 8(9), 6096–6104. https://doi.org/10.3390/ma8095294
  • Sardinha, M., de Brito, J., & Rodrigues, R. (2016). Durability properties of structural concrete containing very fine aggregates of marble sludge. Construction and Building Materials, 119, 45–52. https://doi.org/10.1016/j.conbuildmat.2016.05.071
  • Sarker, P. K., Kelly, S., & Yao, Z. (2014). Effect of fire exposure on cracking, spalling and residual strength of fly ash geopolymer concrete. Materials & Design, 63, 584–592. https://doi.org/10.1016/j.matdes.2014.06.059
  • Singh, N. B., & Middendorf, B. (2020). Geopolymers as an alternative to Portland cement: An overview. Construction and Building Materials, 237, 117455. https://doi.org/10.1016/j.conbuildmat.2019.117455
  • Singh, B., Rahman, M., Paswan, R., & Bhattacharyya, S. K. (2016). Effect of activator concentration on the strength, ITZ and drying shrinkage of fly ash/slag geopolymer concrete. Construction and Building Materials, 118, 171–179. https://doi.org/10.1016/j.conbuildmat.2016.05.008
  • Sreenivasulu, C., Guru, J. J., Sekhar, R. M. V., & Pavan, K. D. (2016). Effect of fine aggregate blending on short-term mechanical properties of geopolymer concrete. Engineering Science and Technology, An International Journal, 20(6), 1642–1652.
  • Suraneni, P., Puligilla, S., Kim, E., Chen, X., Struble, L., & Mondal, P. (2014). Monitoring setting of geopolymers. Advances in Civil Engineering Materials, 3(1), 20130100. https://doi.org/10.1520/ACEM20130100
  • Temuujin, J., Minjigmaa, A., Rickard, W., Lee, M., Williams, I., & van Riessen, A. (2009). Preparation of metakaolin based geopolymer coatings on metal substrates as thermal barriers. Applied Clay Science, 46(3), 265–270. https://doi.org/10.1016/j.clay.2009.08.015
  • Temuujin, J., Minjigmaa, A., Rickard, W., Lee, M., Williams, I., & van Riessen, A. (2010). Fly ash based geopolymer thin coatings on metal substrates and its thermal evaluation. Journal of Hazardous Materials, 180(1–3), 748–752. https://doi.org/10.1016/j.jhazmat.2010.04.121
  • Thakur, A. K., Pappu, A., & Thakur, V. K. (2019). Synthesis and characterization of new class of geopolymer hybrid composite materials from industrial wastes. Journal of Cleaner Production, 230, 11–20. https://doi.org/10.1016/j.jclepro.2019.05.081
  • Topçu, İ. B., Bilir, T., & Uygunoğlu, T. (2009). Effect of waste marble dust content as filler on properties of self-compacting concrete. Construction and Building Materials, 23(5), 1947–1953. https://doi.org/10.1016/j.conbuildmat.2008.09.007
  • Topçu, İ., & Canbaz, M. (2004). Properties of concrete containing waste glass. Cement and Concrete Research, 34(2), 267–274. https://doi.org/10.1016/j.cemconres.2003.07.003
  • Topçu, İ. B., & Karakurt, C. (2008). Properties of reinforced concrete steel rebars exposed to high temperatures. Research Letters in Materials Science, 2008, 1–4. https://doi.org/10.1155/2008/814137
  • Uysal, M. (2012). Self-compacting concrete incorporating filler additives: Performance at high temperatures. Construction and Building Materials, 26(1), 701–706. https://doi.org/10.1016/j.conbuildmat.2011.06.077
  • Uysal, M., Al-Mashhadani, M. M., Aygörmez, Y., & Canpolat, O. (2018). Effect of using colemanite waste and silica fume as partial replacement on the performance of metakaolin-based geopolymer mortars. Construction and Building Materials, 176, 271–282. https://doi.org/10.1016/j.conbuildmat.2018.05.034
  • Valcuende, M., Parra, C., Marco, E., Garrido, A., Martínez, E., & Cánoves, J. (2012). Influence of limestone filler and viscosity-modifying admixture on the porous structure of self-compacting concrete. Construction and Building Materials, 28(1), 122–128. https://doi.org/10.1016/j.conbuildmat.2011.07.029
  • Van Jaarsveld, J. G. S., Van Deventer, J. S. J., & Lorenzen, L. (1997). The potential use of geopolymeric materials to immobilise toxic metals: Part I. Minerals Engineering, 10(7), 659–669. https://doi.org/10.1016/S0892-6875(97)00046-0
  • Wang, K., He, Y., Song, X., & Cui, X. (2015). Effects of the metakaolin-based geopolymer on high-temperature performances of geopolymer/PVC composite materials. Applied Clay Science, 114, 586–592. https://doi.org/10.1016/j.clay.2015.07.008
  • Wang, D., Shi, C., Farzadnia, N., Shi, Z., Jia, H., & Ou, Z. (2018). A review on use of limestone powder in cement-based materials: Mechanism, hydration and microstructures. Construction and Building Materials, 181, 659–672. https://doi.org/10.1016/j.conbuildmat.2018.06.075
  • Wardhono, A., Gunasekara, C., Law, D. W., & Setunge, S. (2017). Comparison of long term performance between alkali activated slag and fly ash geopolymer concretes. Construction and Building Materials, 143, 272–279. https://doi.org/10.1016/j.conbuildmat.2017.03.153
  • Yang, Z., Mocadlo, R., Zhao, M., Sisson, R. D., Tao, M., & Liang, J. (2019). Preparation of a geopolymer from red mud slurry and class F fly ash and its behavior at elevated temperatures. Construction and Building Materials, 221, 308–317. https://doi.org/10.1016/j.conbuildmat.2019.06.034
  • Ye, J., Zhang, W., & Shi, D. (2014). Effect of elevated temperature on the properties of geopolymer synthesized from calcined ore-dressing tailing of bauxite and ground-granulated blast furnace slag. Construction and Building Materials, 69, 41–48. https://doi.org/10.1016/j.conbuildmat.2014.07.002
  • Yüksel, İ., Ozkan, O., & Bilir, T. (2006). Use of granulated blast-furnace slag in concrete as fine aggregate. Aci Materials Journal, 103, 203–208.
  • Yüksel, İ., Siddique, R., & Özkan, Ö. (2011). Influence of high temperature on the properties of concretes made with industrial by-products as fine aggregate replacement. Construction and Building Materials, 25(2), 967–972. https://doi.org/10.1016/j.conbuildmat.2010.06.085
  • Zanvettor, G., Barbuta, M., Rotaru, A., & Bejan, L. (2019). Tensile properties of green polymer concrete. Procedia Manufacturing, 32, 248–252. https://doi.org/10.1016/j.promfg.2019.02.210
  • Zareei, S. A., Ameri, F., Shoaei, P., & Bahrami, N. (2019). Recycled ceramic waste high strength concrete containing wollastonite particles and micro-silica: A comprehensive experimental study. Construction and Building Materials, 201, 11–32. https://doi.org/10.1016/j.conbuildmat.2018.12.161
  • Zhang, H. Y., Kodur, V., Qi, S. L., Cao, L., & Wu, B. (2014). Development of metakaolin–fly ash based geopolymers for fire resistance applications. Construction and Building Materials, 55, 38–45. https://doi.org/10.1016/j.conbuildmat.2014.01.040
  • Zhang, H., Kodur, V., Wu, b., Cao, L., & Qi, S. (2016). Comparative thermal and mechanical performance of geopolymers derived from metakaolin and fly ash. Journal of Materials in Civil Engineering, 28(2), 04015092. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001359
  • Zhang, H. Y., Kodur, V., Wu, B., Cao, L., & Wang, F. (2016). Thermal behavior and mechanical properties of geopolymer mortar after exposure to elevated temperatures. Construction and Building Materials, 109, 17–24. https://doi.org/10.1016/j.conbuildmat.2016.01.043
  • Zhang, Y. J., Li, S., Wang, Y. C., & Xu, D. L. (2012). Microstructural and strength evolutions of geopolymer composite reinforced by resin exposed to elevated temperature. Journal of Non-Crystalline Solids, 358(3), 620–624. https://doi.org/10.1016/j.jnoncrysol.2011.11.006
  • Zhou, W., Shi, X., Lu, X., Qi, C., Luan, B., & Liu, F. (2020). The mechanical and microstructural properties of refuse mudstone-GGBS-red mud based geopolymer composites made with sand. Construction and Building Materials, 253, 119193. https://doi.org/10.1016/j.conbuildmat.2020.119193

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.