587
Views
8
CrossRef citations to date
0
Altmetric
Original Articles

Probabilistic characteristics analysis for the time-dependent deformation of clay soils due to spatial variability

, ORCID Icon, &
Pages 6096-6114 | Received 17 Aug 2020, Accepted 18 May 2021, Published online: 17 Jun 2021

References

  • Baecher, G. B., & Christian, J. T. (2003). Reliability and statistics in geotechnical engineering. John Wiley and Sons Ltd.
  • Bárdossy, G., & Fodor, J. (2001). Traditional and new ways to handle uncertainty in geology. Natural Resources Research, 10(3), 179–187. https://doi.org/10.1023/A:1012513107364
  • Benson, C. H. (1993). Probability distributions for hydraulic conductivity of compacted soil liners. Journal of Geotechnical Engineering, 119(3), 471–486. https://doi.org/10.1061/(ASCE)0733-9410(1993)119:3(471)
  • Bergman, L. A., Shinozuka, M., & Bucher, C. G. (1997). A state-of-the-art report on computational stochastic mechanics. Probabilistic Engineering Mechanics, 12(4), 197–321. https://doi.org/10.1016/S0266-8920(97)00003-9
  • Biot, M. A. (1941). General theory of three-dimensional consolidation. Journal of Applied Physics, 12(2), 155–164. https://doi.org/10.1063/1.1712886
  • Bong, T., & Stuedlein, A. W. (2018). Efficient methodology for probabilistic analysis of consolidation considering spatial variability. Engineering Geology, 237, 53–63. https://doi.org/10.1016/j.enggeo.2018.02.009
  • Casagrande, A. (1936). The determination of pre-consolidation load and its practical significance. Proc. of Fist ICMFE, 3, 60–64.
  • Chenari, R. J., Fatahi, B., Ghoreishi, M., & Taleb, A. (2019). Physical and numerical modelling of the inherent variability of shear strength in soil mechanics. Geomechanics and Engineering, 17(1), 31–45. https://doi.org/10.12989/gae.2019.17.1.031
  • Cho, S. E. (2010). Probabilistic assessment of slope stability that considers the spatial variability of soil properties. Journal of Geotechnical and Geoenvironmental Engineering, 136(7), 975–984. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000309
  • Cooley, J. W., & Tukey, J. W. (1965). An algorithm for the machine calculation of complex Fourier series[J]. Mathematics of Computation, 19(90), 297-301.
  • Fei, S. Z., Tan, X. H., Wang, X., Du, L. F., & Sun, Z. H. (2019). Evaluation of soil spatial variability by micro-structure simulation. Geomechanics and Engineering, 17(6), 565–572. https://doi.org/10.12989/gae.2019.17.6.565
  • Fenton, G. A., & Griffiths, D. V. (2002). Probabilistic foundation settlement on spatially random soil. Journal of Geotechnical and Geoenvironmental Engineering, 128(5), 381–390. https://doi.org/10.1061/(ASCE)1090-0241(2002)128:5(381)
  • Hu, B., & Schiehlen, W. (1997). On the simulation of stochastic processes by spectral representation. Probabilistic Engineering Mechanics, 12(2), 105–113. https://doi.org/10.1016/S0266-8920(96)00039-2
  • Huang, J., Griffiths, D. V., & Fenton, G. A. (2010). Probabilistic analysis of coupled soil consolidation. Journal of Geotechnical and Geoenvironmental Engineering, 136(3), 417–430. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000238
  • Huang, H. W., Xiao, L., Zhang, D. M., & Zhang, J. (2017). Influence of spatial variability of soil Young's modulus on tunnel convergence in soft soils. Engineering Geology, 228, 357–370. https://doi.org/10.1016/j.enggeo.2017.09.011
  • Karim, M. R., & Gnanendran, C. T. (2014). Review of constitutive models for describing the time dependent behaviour of soft clays. Geomechanics and Geoengineering, 9(1), 36–51. https://doi.org/10.1080/17486025.2013.804212
  • Kim, D., Ryu, D., Lee, C., & Lee, W. (2013). Probabilistic evaluation of primary consolidation settlement of Songdo New City by using kriged estimates of geologic profiles. Acta Geotechnica, 2013, 8(3), 323–334. https://doi.org/10.1007/s11440-012-0192-5
  • Lee, I. K., White, W., & Ingles, O. G. (1983). Geotechnical engineering. London.
  • Li, X. Y., & Hu, L. Q. (2011). Probabilistic analysis of one-dimensional consolidation with Monte Carlo simulations. Applied Mechanics and Materials, 55-57, 907–912. https://doi.org/10.4028/www.scientific.net/AMM.55-57.907
  • Lumb, P. (1974). Application of statistics in soil mechanics, in Soil Mechanics – New Horizons, ed. I. K. Lee, American Elsevier, New York.
  • Morsy, M. M., Morgenstern, N. R., & Chan, D. H. (1995). Simulation of creep deformation in the foundation of Tar Island Dyke. Canadian Geotechnical Journal, 32(6), 1002–1023. https://doi.org/10.1139/t95-098
  • Papaioannou, I., & Straub, D. (2012). Reliability updating in geotechnical engineering including spatial variability of soil. Computers and Geotechnics, 42, 44–51. https://doi.org/10.1016/j.compgeo.2011.12.004
  • Phoon, K. K., & Kulhawy, F. H. (1999). Characterization of geotechnical variability. Canadian Geotechnical Journal, 36(4), 612–624. https://doi.org/10.1139/t99-038
  • Prevost, J. H., Deodatis, G., & Popescu, R. (1997). Effects of spatial variability on soil liquefaction: Some design recommendations. Géotechnique, 47(5), 1019–1036. https://doi.org/10.1680/geot.1997.47.5.1019
  • Rehfeldt, K. R., Boggs, J. M., & Gelhar, L. W. (1992). Field study of dispersion in a heterogeneous aquifer: 3. Geostatistical analysis of hydraulic conductivity. Water Resources Research, 28(12), 3309–3324. https://doi.org/10.1029/92WR01758
  • Stefanou, G. (2009). The stochastic finite element method: Past, present and future. Computer Methods in Applied Mechanics and Engineering, 198(9–12), 1031–1051. https://doi.org/10.1016/j.cma.2008.11.007
  • Vanmarcke, E. H. (2010). Random fields: Analysis and synthesis (revised and expanded). World Scientific Publishing Co. Pvt. Ltd.
  • Xu, S., Chen, Y. L., & Zhao, C. X. (2008). One-dimensional consolidation tests of creep deformation and secondary consolidation characteristics of soft soil in Shanghai area. Journal of Engineering Geology, 16(4), 495–501. https://doi.org/10.3969/j.issn.1004-9665.2008.04.010
  • Yin, Z. Y., Chang, C. S., Karstunen, M., & Hicher, P. Y. (2010). An anisotropic elastic–viscoplastic model for soft clays. International Journal of Solids and Structures, 47(5), 665–677. https://doi.org/10.1016/j.ijsolstr.2009.11.004
  • Zhang J. Z., Huang H. W., Zhang D. M., Zhou M. L., Tang C., & Liu D. J. (2021). Effect of ground surface surcharge on deformational performance of tunnel in spatially variable soil. Computers and Geotechnics, 136, 104229.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.