258
Views
0
CrossRef citations to date
0
Altmetric
Original Articles

Development of a constitutive model for fibre reinforced cemented Toyoura sand

, &
Pages 6133-6164 | Received 18 Dec 2020, Accepted 18 May 2021, Published online: 07 Jun 2021

References

  • Been, K., & Jefferies, M. G. (1985). A state parameter for sands. Géotechnique, 35(2), 99–112. https://doi.org/10.1680/geot.1985.35.2.99
  • Been, K., Jefferies, M. G., & Hachey, J. (1991). The critical state of sands. Géotechnique, 41(3), 365–381. https://doi.org/10.1680/geot.1991.41.3.365
  • Bellotti, R., Benoit, J., Fretti, C., & Jamiolkowski, M. (1997). Stiffness of Toyoura sand from dilatometer tests. Journal of Geotechnical and Geoenvironmental Engineering, 123(9), 836–846. https://doi.org/10.1061/(ASCE)1090-0241(1997)123:9(836)
  • Capriz, G., & Mariano, P. M. (2004). Advances in multifield theories for continua with substructure. Birkhäuser.
  • Chambon, R., Crochepeyre, S., & Desrues, J. (2000). Localization criteria for non‐linear constitutive equations of geomaterials. Mechanics of Cohesive-Frictional Materials, 5(1), 61–82. https://doi.org/10.1002/(SICI)1099-1484(200001)5:1<61::AID-CFM83>3.0.CO;2-M
  • Cuomo, S., Moscariello, M. G., Manzanal, D., Pastor, M., & Foresta, V. (2018). Generalized plasticity constitutive model applied to wetting of unsaturated pyroclastic soil. Computers and Geotechnics, 99, 191–202. https://doi.org/10.1016/j.compgeo.2018.03.006
  • Dafalias, Y. F., & Manzari, M. T. (2004). Simple plasticity sand model accounting for fabric change effects. Journal of Engineering Mechanics, 130(6). https://doi.org/10.1061/(ASCE)0733-9399(2004)130:6(622)
  • De, S., & Basudhar, P. K. (2008). Steady state strength behaviour of Yamuna sand. Geotechnical and Geological Engineering, 26(3), 237–250. https://doi.org/10.1007/s10706-007-9160-5
  • Diambra, A. (2010). Fibre reinforced sands: experiments and modelling [PhD Dissertation]. University of Bristol.
  • Diambra, A., & Ibraim, E. (2014). Modelling of fibre-cohesive soil mixtures. Acta Geotechnica, 9(6), 1029–1043. https://doi.org/10.1007/s11440-013-0283-y
  • Diambra, A., & Ibraim, E. (2015). Fibre-reinforced sand: interaction at the fibre and grain scale. Géotechnique, 65(4), 296–308. https://doi.org/10.1680/geot.14.P.206
  • Drucker, D. C., Gibson, R. E., & Henkel, D. J. (1957). Soil mechanics and work-hardening theories of plasticity. Transactions of the American Society of Civil Engineers, 122(1), 338–346. https://doi.org/10.1061/TACEAT.0007430
  • Fuentes, W., Triantafyllidis, T., & Lizcano, A. (2012). Hypoplastic model for sands with loading surface. Acta Geotechnica, 7(3), 177–192. https://doi.org/10.1007/s11440-012-0161-z
  • Gajo, A., & Muir Wood, D. (1999a). Severn-Trent sand: A kinematic-hardening constitutive model: the q-p formulation. Géotechnique, 49(5), 595–614. https://doi.org/10.1680/geot.1999.49.5.595
  • Gajo, A., & Muir Wood, D. (1999b). A kinematic hardening constitutive model for sands: Title: multiaxial formulation. International Journal for Numerical and Analytical Methods in Geomechanics, 23(9), 925–965. https://doi.org/10.1002/(SICI)1096-9853(19990810)23:9<925::AID-NAG19>3.0.CO;2-M
  • Gao, Z., & Zhao, J. (2012). Constitutive modeling of artificially cemented sand by considering fabric anisotropy. Computers and Geotechnics., 41, 57–69. https://doi.org/10.1016/j.compgeo.2011.10.007
  • Grabe, J., & Heins, E. (2016). Coupled deformation seepage analysis of dynamic capacity tests on open-ended piles in saturated sand. Acta Geotechnica., https://doi.org/10.1007/s11440-016-0442-z
  • Gu, X., Yang, J., & Huang, M. (2013). Laboratory measurements of small strain properties of dry sands by bender element. Soils and Foundations, 53(5), 735–745. https://doi.org/10.1016/j.sandf.2013.08.011
  • Haeri, S. M., & Hamidi, A. (2009). Constitutive modelling of cemented gravelly sands. Geomechanics and Geoengineering, 4(2), 123–139. https://doi.org/10.1080/17486020902855696
  • Hardin, B., & Black, W. L. (1966). Sand stiffness under various triaxial stresses. Journal of the Soil Mechanics and Foundations Division, 92(2), 27–42. https://doi.org/10.1061/JSFEAQ.0000865
  • Herle, I., & Kolymbas, D. (2004). Hypoplasticity for soils with low friction angles. Computers and Geotechnics, 31(5), 365–373. https://doi.org/10.1016/j.compgeo.2004.04.002
  • Hleibieh, J., Wegener, D., & Herle, I. (2014). Numerical simulation of a tunnel surrounded by sand under earthquake using a hypoplastic model. Acta Geotechnica, 9(4), 631–640. https://doi.org/10.1007/s11440-013-0294-8
  • https://www.hindawi.com/journals/ace/2018/7242936/.
  • Huang, W. X., Wu, W., Sun, D. A., & Sloan, S. (2006). A simple hypoplastic model for normally consolidated clay. Acta Geotechnica, 1(1), 15–27. https://doi.org/10.1007/s11440-005-0003-3
  • Hyodo, M., Tanimizu, H., Yasufuku, N., & Murata, H. (1994). Undrained cyclic and monotonic triaxial behaviour of saturated loose sand. Soils and Foundations, 34(1), 19–32. https://doi.org/10.3208/sandf1972.34.19
  • Imam, M. R. (1999). Modeling the constitutive behaviour of sand for the analysis of static liquefaction [Ph.D. thesis]. University of Alberta.
  • Imam, S. R., Morgenstern, N. R., Robertson, P. K., & Chan, D. H. (2005). A critical-state constitutive model for liquefiable sand. Canadian Geotechnical Journal, 42(3), 830–855. https://doi.org/10.1139/t05-014
  • Ishihara, K. (1993). Liquefaction and flow failure during earthquake. Géotechnique, 43(3), 351–415. https://doi.org/10.1680/geot.1993.43.3.351
  • Jiang, Y. M., & Liu, M. (2016). Similarities between GSH, hypoplasticity and KCR. Acta Geotechnica, 11(3), 519–537. https://doi.org/10.1007/s11440-016-0461-9
  • Kolymbas, D., & Herle (1998). Hypoplasticity: a framework to model granular materials. In: Cambou B. (eds) Behaviour of Granular Materials. International Centre for Mechanical Sciences (Courses and Lectures), 385. https://doi.org/10.1007/978-3-7091-2526-7_5
  • Lam, W. K., & Tatsuoka, F. (1988). Effects of initial anisotropic fabric and sigma2 on strength and deformation characteristics of sand. Soils and Foundations, 28(1), 89–106. https://doi.org/10.3208/sandf1972.28.89
  • Li, Z., Kotronis, P., Escoffier, S., & Tamagnini, C. (2016). A hypoplastic macroelement for single vertical piles in sand subject to three-dimensional loading conditions. Acta Geotechnica, 11(2), 373–390. https://doi.org/10.1007/s11440-015-0415-7
  • Lin, J., & Wu, W. (2016). A comparative study between DEM and micropolar hypoplasticity. Powder Technology., 293, 121–129. https://doi.org/10.1016/j.powtec.2015.11.033
  • Liu, J. (2013). A study of the mechanical behaviour of cemented soils via Structured Cam Clay. Master [Thesis]. University of Wollongong.
  • Manzanal, D., Pastor, M., & Merodo, J. A. F. (2011). Generalized plasticity state parameter-based model for saturated and unsaturated soils. Part II: Unsaturated soil modeling. International Journal for Numerical and Analytical Methods in Geomechanics, 35(18), 1899–1917. https://doi.org/10.1002/nag.983
  • Manzari, M. T., & Dafalias, Y. F. (1997). A critical state two-surface plasticity model for sands. Géotechnique, 47(2), 255–272. https://doi.org/10.1680/geot.1997.47.2.255
  • Mašín, D. (2012). Hypoplastic Cam-clay model. Géotechnique, 62(6), 549–555. https://doi.org/10.1680/geot.11.T.019
  • Mašín, D. (2013). Clay hypoplasticity with explicitly defined asymptotic states. Acta Geotechnica, 8(5), 481–496. https://doi.org/10.1007/s11440-012-0199-y
  • Mašín, D. (2013). Clay hypoplasticity with explicitly defined asymptotic states. Acta Geotechnica, 8(5), 481–496. https://doi.org/10.1007/s11440-012-0199-y
  • Mroz, Z., & Zienkiewicz, O. C. (1984). Uniform formulation of constitutive equations for clays and sands. Mechanics of Engineering Materials, 12, 415–449.
  • Niemunis, A. (2003). Extended hypoplastic models for soils. Ruhr University Bochum. Dissertation.
  • Oda, M. (1977). On the influence of progressive failure on the bearing capacity of shallow foundations in dense sand. Soils and Foundations, 17(4), 71–73.
  • Pastor, M., Chan, A. H. C., Mira, P., Manzanal, D., Fernández Merodo, J. A., & Blanc, T. (2011). Computational geomechanics: The heritage of Olek Zienkiewicz. International Journal for Numerical Methods in Engineering, 87(1-5), 457–489. https://doi.org/10.1002/nme.3192
  • Pastor, M., Manzanal, D., Fernández Merodo, J. A., Mira, P., Blanc, T., Drempetic, V., Pastor, M. J., Haddad, B., & Sánchez, M. (2010). From solid to fluidized soils: Diffuse failure mechanisms in geostructures with applications to fast catastrophic landslides. Granular Matter, 12(3), 211–328. https://doi.org/10.1007/s10035-009-0152-4
  • Pastor, M., Zienkiewicz, O. C., & Chan, A. H. (1990). Generalized plasticity and the modeling of soil behavior. International Journal for Numerical and Analytical Methods in Geomechanics, 14(3), 151–190. https://doi.org/10.1002/nag.1610140302
  • Pastor, M., Zienkiewicz, O. C., & Leung, K. H. (1985). Simple model for transient soil loading in earthquake analysis. II. Non-associative models for sands. International Journal for Numerical and Analytical Methods in Geomechanics, 9(5), 477–498. https://doi.org/10.1002/nag.1610090506
  • Peng, C., Wu, W., Yu, H. S., & Wang, C. (2015). SPH approach for large deformation analysis with hypoplastic constitutive model. Acta Geotechnica, 10(6), 703–717. https://doi.org/10.1007/s11440-015-0399-3
  • Rahimi, M., Chan, D., & Nouri, A. (2016). Bounding surface constitutive model for cemented sand under monotonic loading. International Journal of Geomechanics, 16(2) ISSN 1532-3641/04015049 https://doi.org/10.1061/(ASCE)GM.1943-5622.0000534
  • Roscoe, K. H., & Burland, J. (1968). On the generalized stress-strain behavior of wet clays. In: Proceedings of Engineering Plasticity. University Press, pp. 535–609.
  • Roscoe, K. H., Schofield, A. N., & Wroth, C. P. (1958). On the yielding of soils. Géotechnique, 8(1), 22–53. https://doi.org/10.1680/geot.1958.8.1.22
  • Rotisciani, G., & Miliziano, S. (2014). Guidelines for calibration and use of the Severn-Trent sand model in modeling cantilevered wall-supported excavations. International Journal of Geomechanics, 14(6), 04014029. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000373. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000373
  • Safdar, M. (2018). Monotonic stress-strain behaviour of fibre reinforced cemented Toyoura sand [Ph.D. Dissertation]. Western University.
  • Schmidt, C. (2015). Static and dynamic response of silty Toyoura sand with PVA fibre and cement additives [Master Thesis]. Western University.
  • Schofield, A., & Wroth, C. (1968). Critical state soil mechanics.
  • Wang, Z. L., Dafalias, Y. F., Li, X. S., & Makdisi, F. I. (2002). State pressure index for modelling sand behaviour. Journal of Geotechnical and Geoenvironmental Engineering, 128(6), 511–519. https://doi.org/10.1061/(ASCE)1090-0241(2002)128:6(511)
  • Whitlow, R. (2001). Basic soil mechanics. Pearson Education Ltd.
  • Woo, S. I., & Salgado, R. (2015). Bounding surface modeling of sand with consideration of fabric and its evolution during monotonic shearing. International Journal of Solids and Structures, 63, 277–288. https://doi.org/10.1016/j.ijsolstr.2015.03.005
  • Wood, D. M., Belkheir, K., & Liu, D. F. (1994). Strain softening and state parameter for sand modelling. Géotechnique, 44(2), 335–339. https://doi.org/10.1680/geot.1994.44.2.335
  • Zienkiewicz, O. C. (1999). Computational Geomechanics with Special Reference to Earthquake Engineering. John Wiley.
  • Zienkiewicz, O. C., Leung, K. H., & Pastor, M. (1985). Simple model for transient soil loading in earthquake analysis I: basic model and its application. International Journal for Numerical and Analytical Methods in Geomechanics, 9(5), 453–476. https://doi.org/10.1002/nag.1610090505
  • Zytynski, M., Randolph, M. F., Nova, R., & Wroth, C. P. (1978). On modelling the unloading-reloading behaviour of soils. International Journal for Numerical and Analytical Methods in Geomechanics, 2(1), 87–94. https://doi.org/10.1002/nag.1610020107

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.