313
Views
9
CrossRef citations to date
0
Altmetric
Original Articles

Flexural behavior of environmentally friendly ultra-high-performance concrete with locally available low-cost synthetic fibers

, &
Pages 6281-6304 | Received 19 Dec 2020, Accepted 31 May 2021, Published online: 15 Jun 2021

References

  • Abellán, J., Fernández, J., Torres, N., & Núñez, A. (2020a). Development of cost-efficient UHPC with local materials in Colombia. Proc. Hipermat 2020 - 5th Int. Symp. UHPC Nanotechnol. Constr. Mater., Kassel, Germany, pp. 97–98.
  • Abellán, J., Fernández, J., Torres, N., & Núñez, A. (2020b). Statistical optimization of ultra-high-performance glass concrete. ACI Materials Journal, 117, 243–254. https://doi.org/10.14359/51720292
  • Abellán, J., Núñez, A., & Arango, S. (2020c). Pedestrian bridge of UNAL in Manizales: A new UPHFRC application in the Colombian building market. Proc. Hipermat 2020 - 5th Int. Symp. UHPC Nanotechnol. Constr. Mater., Kassel, Germany, pp. 43–44.
  • Abellán, J., Torres, N., Núñez, A., & Fernández, J. (2018a). Concretos de muy altas prestaciones reforzados con fibras: Estado del arte y aplicaciones en el mercado Latinoamericano. XXXVIII Jornadas Sudam. Ing. Estructural, Lima.
  • Abellán, J., Torres, N., Núñez, A., & Fernández, J. (2018b). Influencia del exponente de Fuller, la relación agua conglomerante y el contenido en policarboxilato en las propiedades de concretos de muy altas prestaciones. 19 Conv. Cient. Ing. y Arquit, pp. 1–16.
  • Abellán-García, J. (2020a). Dosage optimization and seismic retrofitting applications of Ultra-HighPerformance Fiber Reinforced Concrete (UHPFRC) [Phd Thesis]. Universidad Politécnica de Madrid.
  • Abellán-García, J. (2020b). Four-layer perceptron approach for strength prediction of UHPC. Construction and Building Materials, 256, 119465. https://doi.org/10.1016/j.conbuildmat.2020.119465
  • Abellán-García, J. (2020c). Comparison of artificial intelligence and multivariate regression in modeling the flexural behavior of UHPFRC. DYNA, 87, 239–248. https://doi.org/10.15446/dyna.v87n214.86172.
  • Abellán-García, J. (2021). K-fold validation neural network approach for predicting the one-day compressive strength of UHPC. Advances in Civil Engineering Materials, 10(1), 20200055. https://doi.org/10.1520/ACEM20200055
  • Abellán-García, J., & Guzmán-Guzmán, J. S. (2021). Random forest-based optimization of UHPFRC under ductility requirements for seismic retrofitting applications. Construction and Building Materials, 285, 122869. https://doi.org/10.1016/j.conbuildmat.2021.122869
  • Abellán-García, J., Fernández-Gómez, J., & Torres-Castellanos, N. (2020a). Properties prediction of environmentally friendly ultra-high-performance concrete using artificial neural networks. European Journal of Environmental and Civil Engineering, 1–25. https://doi.org/10.1080/19648189.2020.1762749
  • Abellán-García, J., Fernández-Gómez, J. A., Torres-Castellanos, N., & Núñez-López, A. M. (2020b). Machine learning prediction of flexural behavior of UHPFRC. In P. Serna, A. Llano-Torre, J. R. Martí-Vargas, & J. Navarro-Gregori (Eds.), Fibre Reinforced Concrete: Improvements and Innovations, BEFIB 2020., RILEM Bookseries (pp. 570–583). Switzerland: Springer Nature, AG. https://doi.org/10.1007/978-3-030-58482-5_52.
  • Abellán-García, J., Fernández-Gómez, J., Torres-Castellanos, N., & Núñez-López, A. (2021a). Tensile behavior of normal strength steel fiber green UHPFRC. ACI Materials Journal, 118, 127–138. https://doi.org/10.14359/51725992
  • Abellán-García, J., Guzmán-Guzmán, J. S., Sánchez-Díaz, J. A., & Rojas-Grillo, J. (2021b). Experimental validation of Artificial Intelligence model for the energy absorption capacity of UHPFRC. DYNA, 88, 150–159. https://doi.org/10.15446/dyna.v88n217.
  • Abellán-García, J., Nuñez-Lopez, A., & Arango-Campo, S. (2020c). Pedestrian bridge over Las Vegas avenue in Medellín. First Latin American infrastructure in UHPFRC. In P. Serna, A. Llano-Torre, J. R. Martí-Vargas, & J. Navarro-Gregori (Eds.), Fiber Reinforced Concrete: Omprovements and Innovations, BEFIB 2020, RILEM Bookseries (pp. 864–872). Switzerland: Springer Nature, AG. https://doi.org/10.1007/978-3-030-58482-5_76.
  • Abellán-García, J., Núñez-López, A., Torres-Castellanos, N., & Fernández-Gómez, J. (2019). Effect of FC3R on the properties of ultra-high-performance concrete with recycled glass. DYNA, 86, 84–92. https://doi.org/10.15446/dyna.v86n211.79596
  • Abellán-García, J., Núñez-López, A., Torres-Castellanos, N., & Fernández-Gómez, J. (2020d). Factorial design of reactive powder concrete containing electric arc slag furnace and recycled glass powder. DYNA, 87, 42–51. https://doi.org/10.15446/dyna.v87n213.82655.
  • Abellán-García, J., Santofimo-Vargas, M. A., & Torres-Castellanos, N. (2020e). Analysis of metakaolin as partial substitution of ordinary Portland cement in Reactive Powder Concrete. Advances in Civil Engineering Materials, 9, 368–386. https://doi.org/10.1520/ACEM20190224
  • Abellán-García, J., Torres-Castellanos, N., Fernández-Gómez, J. A., & Núñez-López, A. M. (2021c). Ultra-high-performance concrete with local high unburned carbon fly ash. DYNA, 88, 38–47. https://doi.org/10.15446/dyna.v88n216.89234.
  • ACI Committe 239R. (2018). Ultra-high-performance concrete: An emerging technology report. American Concrete Institute.
  • Acker, P., & Behloul, M. (2004). Ductal technology: A large spectrum of properties, a wide range of applications. In M.S.E.F.C.G.S. Fröhlich & S. Piotrowski (Eds.), Proc. Int. Symp. Ultra High Perform. Concr. (pp. 11–24). Kassel University.
  • Amanjean, E. N., & Vidal, T. (2015). Low cost ultra-high performance fiber reinforced concrete (UHPFRC) with flash metakaolin. Key Engineering Materials, 629–630. www.scientific.net/KEM.629-630.55.
  • Asociación Colombiana de Ingenieria Sismica – AIS. (1997). Reglamento Colombiano de Construcción Sismo Resistente NSR-10,
  • Behloul, M., Bernier, G., & Cheyrezy, M. (1996). Tensile behavior of reactive powder concrete (RPC). 4th Int. Symp. Util. HSC.
  • Bornemann, R., & Faber, S. (2004). UHPC with steel- and non-corroding high-strength polymer fibers under static and cyclic loading. In M. Schmidt, E. Fehling, & C. Geisenhansluke (Eds.), Proc. Int. Symp. Ultra High Perform. Concr (pp. 673–682). University of Kassel.
  • De Larrard, F. (1999). Concrete mixture proportioning: A scientific approach (Modern Concrete Technology Series). E&FN SPON.
  • De Larrard, F., & Sedran, T. (2002). Mixture-proportioning of high-performance concrete. Cement and Concrete Research, 32(11), 1699–1704. https://doi.org/10.1016/S0008-8846(02)00861-X
  • Funk, J. E., & Dinger, D. R. (1994). Predictive process control of crowded particulate suspensions. Springer Science. https://doi.org/10.1007/978-1-4615-3118-0
  • Haber, Z. B., Munoz, J. F., & Graybeal, B. A. (2017). Field testing of an ultra-high performance concrete overlay.
  • Kalny, M., Kvasnicka, V., & Komanec, J. (2016). First practical applications of UHPC in the Czech Republic. In E. Fehling, B. Middendorf, & J. Thiemicke (Eds.), Proceedings of the Hipermat 2016 - 4th International Symposium on UHPC Nanotechnol. Constr. Mater. (pp. 147–148). Kassel University Press.
  • Kim, D. J., El-Tawil, S., & Naaman, A. (2008a). Loading rate effect on pullout behavior of deformed steel fibers. ACI Materials Journal, 105, 576–584.
  • Kim, D. J., Naaman, A., & El-Tawil, S. (2008b). Comparative flexural behavior of four fiber reinforced cementitious composites. Cement and Concrete Composites, 30(10), 917–928. https://doi.org/10.1016/j.cemconcomp.2008.08.002
  • Kim, D. J., Naaman, A., & El-Tawil, S. (2008c). High tensile strength strain-hardening FRC composites with less than 2% fiber content. In Struct. Mater. Eng. Ser., Second Int. (pp. 169–176). University of Kassel.
  • Kim, D. J., Park, S. H., Ryu, G. S., & Koh, K. T. (2011). Comparative flexural behavior of hybrid ultra high performance fiber reinforced concrete with different macro fibers. Construction and Building Materials, 25(11), 4144–4155. https://doi.org/10.1016/j.conbuildmat04.051
  • Larrard, F. (1994). Optimization of ultra-high performance concrete by the use of a packing model. Cement and Concrete Research, 24, 997–1009.
  • Markovic, I. (2006). High-performance hybrid-fibre concrete: Development and utilisation. DUP Science.
  • Martin-Sanz, H., Chatzi, E., & Brühwiler, E. (2016). The use of ultra high performance fibre reinforced cement-based Composites in rehabilitation projects: A review. [Paper presentation] In V. Saouma, J. Bolander, & E. Landis (Eds.), 9th International Conference on Fracture Mechanics of Concrete and Concrete Structures. https://doi.org/10.21012/fc9.219
  • Massicotte, B., Dagenais, M.-A., & Lagier, F. (2013). Performance of UHPFRC jackets for the seismic strengthening of bridge piers. RILEM-Fib-AFGC Int. Symp. Ultra-High Perform. Fibre-Reinforced, pp. 89–98.
  • Naaman, A., & Najm, H. (1991). Bond-slip mechanisms of steel fibers in concrete. ACI Materials Journal, 88, 135–145.
  • Naaman, A., & Reinhardt, H. W. (2003). Setting the stage, toward performance based classification of FRC composites. Proc. 4th RILEM Symp. High Perform. Fiber Reinf. Cem. Compos.
  • NF P 18-470. (2016). Bétons bétons fibrés à ultra hautes performances—Spécification, performance, production et conformité. ANFOR.
  • O’Connell, S. (2011). Development of a new high performance synthetic fiber for concrete reinforcement. Dalhousie University Halifax.
  • Park, S. H., Kim, D. J., Ryu, G. S., & Koh, K. T. (2012). Tensile behavior of ultra high performance hybrid fiber reinforced concrete. Cement and Concrete Composites, 34(2), 172–184. https://doi.org/10.1016/j.cemconcomp.2011.09.009
  • Reda, M. M., Shrive, N. G., & Guillot, G. E. (1999). Microstructural investigation of innovative UHPC. Cement and Concrete Research, 29(3), 323–329. https://doi.org/10.1016/S0008-8846(98)00225-7
  • Richard, P., & Cheyrezy, M. (1995). Composition of reactive powder concretes. Cement and Concrete Research, 25(7), 1501–1511. https://doi.org/10.1016/0008-8846(95)00144-2
  • Sahmaran, M., & Yaman, I. O. (2007). Hybrid fiber reinforced self-compacting concrete with a high-volume coarse fly ash. Construction and Building Materials, 21(1), 150–156. https://doi.org/10.1016/j.conbuildmat.2005.06.032
  • Scrivener, K. L., Crumbie, A. K., & Laugesen, P. (2004). The interfacial transition zone (ITZ) between cement paste and aggregate in concrete. Interface Science, 12(4), 411–421. https://doi.org/10.1023/B:INTS.0000042339.92990.4c
  • Serna Ros, P., López Martínez, J. Á., & Camacho Torregosa, E. (2012). UHPFRC: De los componentes a la estructura. Simposio Latinoamericano Sobre Concreto Autocompactante, pp. 1–21.
  • Shaaban, M., & Ahmed, S. (2016). Development of ultra-high performance concrete jointed precast decks and concrete piles in integral abutment bridges. First Int. Symp. Jointless Sustain. Bridg, Fuzhou, Fujian, China. https://www.academia.edu/25363851/DEVELOPMENT_OF_ULTRA-HIGH_PERFORMANCE_CONCRETE_FOR_JOINTED_PRECAST_DECKS_AND_CONCRETE_PILES_IN_INTEGRAL_ABUTMENT_BRIDGES.
  • Shi, C., Wu, Z., Xiao, J., Wang, D., Huang, Z., & Fang, Z. (2015a). A review on ultra high performance concrete: Part I. Raw materials and mixture design. Construction and Building Materials, 101, 741–751. https://doi.org/10.1016/j.conbuildmat.2015.10.088
  • Shi, C., Wu, Z., Xiao, J., Wang, D., Huang, Z., & Fang, Z. (2015b). A review on ultra high performance concrete: Part II. Hydration, microstructure and properties. Construction and Building Materials, 96, 368–377. https://doi.org/10.1016/j.conbuildmat.2015.10.088
  • Soliman, N. A., & Tagnit-Hamou, A. (2017). Using glass sand as an alternative for quartz sand in UHPC. Construction and Building Materials, 145, 243–252. https://doi.org/10.1016/j.conbuildmat.2017.03.187
  • Suter, R. A. (2011). Using UHPFRC for complex facade elements. In F. Toutlem (Ed.), Des. Build. with UHPFRC - State Art Dev. (pp. 405–419). John Wiley & Sons, Inc.
  • Tayeh, B. A., Abu Bakar, B. H., Megat Johari, M. A., & Voo, Y. L. (2013). Utilization of ultra-high performance fibre concrete (UHPFC) for rehabilitation - A review. Procedia Engineering, 54, 525–538. https://doi.org/10.1016/j.proeng.2013.03.048
  • The European Project Group. (2005). The European guidelines for self-compacting concrete, 63pp.
  • Vaitkevicius, V., Šerelis, E., & Hilbig, H. (2014). The effect of glass powder on the microstructure of ultra high performance concrete. Construction and Building Materials, 68, 102–109. https://doi.org/10.1016/j.conbuildmat.2014.05.101
  • Wang, R., & Gao, X. (2016). Relationship between flowability, entrapped air content and strength of UHPC mixtures containing different dosage of steel fiber. Applied Sciences, 6(8), 216. https://doi.org/10.3390/app6080216
  • Wille, K., El-Tawil, S., & Naaman, A. E. (2014). Properties of strain hardening ultra high performance fiber reinforced concrete (UHP-FRC) under direct tensile loading. Cement and Concrete Composites, 48, 53–66. https://doi.org/10.1016/j.cemconcomp.2013.12.015
  • Wu, Z., Shi, C., He, W., & Wu, L. (2016). Effects of steel fiber content and shape on mechanical properties of ultra high performance concrete. Construction and Building Materials, 103, 8–14. https://doi.org/10.1016/j.conbuildmat.2015.11.028
  • Yoo, D. Y., Kim, M. J., Kim, S. W., & Park, J. J. (2017). Development of cost effective ultra-high-performance fiber-reinforced concrete using single and hybrid steel fibers. Construction and Building Materials, 150, 383–394. https://doi.org/10.1016/j.conbuildmat.2017.06.018
  • Yu, R., Spiesz, P., & Brouwers, H. J. H. (2014). Mix design and properties assessment of ultra-high performance fibre reinforced concrete (UHPFRC). Cement and Concrete Research, 56, 29–39. https://doi.org/10.1016/j.cemconres.2013.11.002
  • Zhang, J., An, X., & Nie, D. (2016). Effect of fine aggregate characteristics on the thresholds of self-compacting paste rheological properties. Construction and Building Materials, 116, 355–365. https://doi.org/10.1016/j.conbuildmat.2016.04.069

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.