151
Views
0
CrossRef citations to date
0
Altmetric
Original Articles

An analytical method for the thermo-mechanics coupling study of thin-walled spherical shell structure

, , , , , & show all
Pages 6583-6604 | Received 01 Feb 2021, Accepted 24 Jun 2021, Published online: 13 Jul 2021

References

  • Alderman, J. A. (2005). Introduction to LNG safety. Process Safety Progress, 24(3), 144–151. https://doi.org/10.1002/prs.10085
  • Bažant, Z. P., & Oh, B. H. (1983). Crack band theory for fracture of concrete. Matériaux et Constructions, 16(3), 155–177. https://doi.org/10.1007/BF02486267
  • Brunesi, E., Nascimbene, R., Pagani, M., & Beilic, D. (2015). Seismic performance of storage steel tanks during the May 2012 Emilia, Italy, earthquakes. Journal of Performance of Constructed Facilities, 29(5), 04014137. https://doi.org/10.1061/(ASCE)CF.1943-5509.0000628
  • BS 7777. (1993). Flat-bottomed, vertical, cylindrical storage tanks for low temperature service.
  • BS EN 14620. (2006). Design and manufacture of site built, vertical, cylindrical, flat-bottomed steel tanks for the storage of refrigerated, liquefied gases with operating temperatures between 0 °C and -165 °C.
  • Bu, F., & Qian, C. (2015). A rational design approach of intermediate wind girders on large storage tanks. Thin-Walled Structures, 92, 76–81. https://doi.org/10.1016/j.tws.2015.02.024
  • Bu, F., & Qian, C. (2016). On the rational design of the top wind girder of large storage tanks. Thin-Walled Structures, 99, 91–96. https://doi.org/10.1016/j.tws.2015.10.014
  • Chen, Q., Wegrzyn, J., & Prasad, V. (2004). Analysis of temperature and pressure changes in liquefied natural gas (LNG) cryogenic tanks. Cryogenics, 44(10), 701–709. https://doi.org/10.1016/j.cryogenics.2004.03.020
  • Dahmani, L., & Mehaddene, R. (2011). Thermomecanical response of LNG concrete tank to cryogenic temperatures. Defect and Diffusion Forum, 312-315, 1021–1026. https://doi.org/10.4028/www.scientific.net/DDF.312-315.1021
  • GB 50010. (2015). Code for design of concrete structures.
  • Guo, H., Zhuang, X., & Rabczuk, T. (2019). A deep collocation method for the bending analysis of Kirchhoff plate. Computers, Materials & Continua, 59(2), 433–456. https://doi.org/10.32604/cmc.2019.06660
  • Hamed, E., Bradford, M. A., & Gilbert, R. I. (2010). Nonlinear long-term behaviour of spherical shallow thin-walled concrete shells of revolution. International Journal of Solids and Structures, 47(2), 204–215. https://doi.org/10.1016/j.ijsolstr.2009.09.027
  • He, G., Zhang, W., & Wei, L. (1962). The thermal stress calculation of flat shell(part-2). China Civil Engineering Journal, 2, 14–25.
  • Hong, C.-C. (2021). Thermal vibration of thick FGM spherical shells by using TSDT. International Journal of Mechanics and Materials in Design, 17(2), 367–380. https://doi.org/10.1007/s10999-021-09530-4
  • Hou, Y. (2015). Structural optimization and research of large LNG storage tanks [Master Degree thesis, Qingdao University of Science and Technology].
  • Hu, W., Bohra, H., Azzuni, E., & Guzey, S. (2019). The uplift effect of bottom plate of aboveground storage tanks subjected to wind loading. Thin-Walled Structures, 144, 106241. https://doi.org/10.1016/j.tws.2019.106241
  • Huang, C.-X. (1999). The three dimensional modelling of thermal cracks in concrete structure. Materials and Structures, 32(9), 673–678. https://doi.org/10.1007/BF02481705
  • Huang, Y., Li, J., Xiang, C., Liang, C., & Liu, B. (2014). LNG storage tank top automatic balancing pneumatic jacking method, involves connecting steel wire rope with pulley and pulley group to form closed transmission loop and realize synchronous lifting and automatic balancing operation. (Patent No. CN103711351-A; CN103711351-B).
  • Jeon, S.-J., Jin, B.-M., Kim, Y.-J., & Chung, C.-H. (2007). Consistent thermal analysis procedure of LNG storage tank. Structural Engineering and Mechanics, 25(4), 445–466. https://doi.org/10.12989/sem.2007.25.4.445
  • Larsson, O., & Thelandersson, S. (2011). Estimating extreme values of thermal gradients in concrete structures. Materials and Structures, 44(8), 1491–1500. https://doi.org/10.1617/s11527-011-9714-0
  • Lawrence, A. M., Tia, M., Ferraro, C. C., & Bergin, M. (2012). Effect of early age strength on cracking in mass concrete containing different supplementary cementitious materials: Experimental and finite-element investigation. Journal of Materials in Civil Engineering, 24(4), 362–372. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000389
  • Liang, X. L., & Qian, C. F. (2019). Strength and stability analysis of a cryogenic storage tank. IOP Conference Series: Materials Science and Engineering, 504(1), 012067. https://doi.org/10.1088/1757-899X/504/1/012067
  • Lisowski, E., & Czyżycki, W. (2011). Transport and storage of LNG in container tanks. Journal of KONES Powertrain and Transport, 18, 193–201.
  • Liu, Y., Wang, K., & Wang, B. (2019). Transient thermal stresses in a laminated spherical shell of thermoelectric materials. Journal of Mechanics of Materials and Structures, 14(3), 323–341. https://doi.org/10.2140/jomms.2019.14.323
  • Moosaie, A., & Panahi-Kalus, H. (2017). Thermal stresses in an incompressible FGM spherical shell with temperature-dependent material properties. Thin-Walled Structures, 120, 215–224. https://doi.org/10.1016/j.tws.2017.09.005
  • Rabczuk, T., Areias, P. M. A., & Belytschko, T. (2007). A meshfree thin shell method for non-linear dynamic fracture. International Journal for Numerical Methods in Engineering, 72(5), 524–548. https://doi.org/10.1002/nme.2013
  • Rabczuk, T., & Belytschko, T. (2004). Cracking particles: A simplified meshfree method for arbitrary evolving cracks. International Journal for Numerical Methods in Engineering, 61(13), 2316–2343. https://doi.org/10.1002/nme.1151
  • Rabczuk, T., Zi, G., Bordas, S., & Nguyen-Xuan, H. (2010). A simple and robust three-dimensional cracking-particle method without enrichment. Computer Methods in Applied Mechanics and Engineering, 199(37-40), 2437–2455. https://doi.org/10.1016/j.cma.2010.03.031
  • Reddy Gorla, R. S. (2010). Probabilistic analysis of a liquefied natural gas storage tank. Applied Thermal Engineering, 30(17-18), 2763–2769. https://doi.org/10.1016/j.applthermaleng.2010.07.033
  • Reinhardt, H. W., & Veen, C. (1992). Splitting failure of a strain-softening material due to bond stresses. In Applications of fracture mechanics to reinforced concrete (pp. 333–346).
  • Samaniego, E., Anitescu, C., Goswami, S., Nguyen-Thanh, V. M., Guo, H., Hamdia, K., Zhuang, X., & Rabczuk, T. (2020). An energy approach to the solution of partial differential equations in computational mechanics via machine learning: Concepts, implementation and applications. Computer Methods in Applied Mechanics and Engineering, 362, 112790. https://doi.org/10.1016/j.cma.2019.112790
  • Santurjian, O., & Kolarow, L. (1996). A spatial FEM model of thermal stress state of concrete blocks with creep consideration. Computers & Structures, 58(3), 563–574. https://doi.org/10.1016/0045-7949(95)00156-B
  • Stampouloglou, I. H., Theotokoglou, E. E., & Karaoulanis, D. E. (2021). The radially nonhomogeneous isotropic spherical shell under a radially varying temperature field. Applied Mathematical Modelling, 94, 350–368. https://doi.org/10.1016/j.apm.2021.01.014
  • Thakur, P., Pathania, D. S., Verma, G., & Singh, S. B. (2017). Elastic-plastic stress analysis in a spherical shell under internal pressure and steady state temperature. Structural Integrity and Life-Integritet I Vek Konstrukcija, 17(1), 39–43.
  • Tsipianitis, A., & Tsompanakis, Y. (2019). Impact of damping modeling on the seismic response of base-isolated liquid storage tanks. Soil Dynamics and Earthquake Engineering, 121, 281–292. https://doi.org/10.1016/j.soildyn.2019.03.013
  • Tutuncu, N., & Ozturk, M. (1997). Bending stresses in composite spherical shells under axisymmetric edge-loads. Computers & Structures, 62(1), 157–163. https://doi.org/10.1016/S0045-7949(96)00200-3
  • Vu-Bac, N., Lahmer, T., Zhuang, X., Nguyen-Thoi, T., & Rabczuk, T. (2016). A software framework for probabilistic sensitivity analysis for computationally expensive models. Advances in Engineering Software, 100, 19–31. https://doi.org/10.1016/j.advengsoft.2016.06.005
  • Williams, H. E. (1977). Axisymmetric thermal stress in a thin spherical shell by the method of matched asymptotic expansions. International Journal of Solids and Structures, 13(8), 747–769. https://doi.org/10.1016/0020-7683(77)90111-1
  • Wu, Y., & Luna, R. (2001). Numerical implementation of temperature and creep in mass concrete. Finite Elements in Analysis and Design, 37(2), 97–106. https://doi.org/10.1016/S0168-874X(00)00022-6
  • Yang, J., & Ci, F. (2012). Finite element analysis of wall temperature field and stress distribution of large LNG storage tank at high temperature. Journal of Tianjin University, 45(6), 505–510.
  • Yasunaga, J., & Uematsu, Y. (2020). Dynamic buckling of cylindrical storage tanks under fluctuating wind loading. Thin-Walled Structures, 150, 106677. https://doi.org/10.1016/j.tws.2020.106677
  • Zareian, F., Sampere, C., Sandoval, V., McCormick, D. L., Moehle, J., & Leon, R. (2012). Reconnaissance of the Chilean wine industry affected by the 2010 Chile offshore Maule earthquake. Earthquake Spectra, 28(1_suppl1), 503–S512. https://doi.org/10.1193/1.4000048
  • Zhai, X., Wang, Y., & Wang, H. (2016). Thermal stress analysis of concrete wall of LNG tank during construction period. Materials and Structures, 49(6), 2393–2406. https://doi.org/10.1617/s11527-015-0656-9
  • Zhang, C., Fan, J., Xiao, L., Chen, H., & Zhang, B. (2021). LNG storage tank and LNG tank deck structure—Google Patents. (Patent No. CN212617593U).
  • Zhang, C., Xiao, L., Liu, Y., Huang, H., & Zhang, B. (2019). A kind of underground LNG storage tank and its method of construction—Google Patents. (Patent No. CN109519697A).
  • Zhou, L. J., Fan, Y. G., Gao, B., & Wang, X. Y. (2013). Seismic response analysis of LNG storage tank under the vertical earthquake excitation. Applied Mechanics and Materials; Trans Tech Publications Ltd. https://doi.org/10.4028/www.scientific.net/AMM.368-370.1743

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.