128
Views
1
CrossRef citations to date
0
Altmetric
Original Articles

Numerical investigation for the effect of deformation and dynamic pressure on the fast drainage of porous materials

, &
Pages 6605-6624 | Received 03 Oct 2020, Accepted 21 Jun 2021, Published online: 21 Jul 2021

References

  • Abidoye, L. K., & Das, D. B. (2014). Scale dependent dynamic capillary pressure effect for two-phase flow in porous media. Advances in Water Resources, 74, 212–230. https://doi.org/10.1016/j.advwatres.2014.09.009
  • Barenblatt, G. I., & Gil'man, A. A. (1987). Nonequilibrium counterflow capillary impregnation. Journal of Engineering Physics, 52(3), 335–339. https://doi.org/10.1007/BF00872519
  • Barenblatt, G., Patzek, T. W., & Silin, D. (2003). The mathematical model of nonequilibrium effects in water-oil displacement. SPE Journal, 8(04), 409–416. https://doi.org/10.2118/87329-PA
  • Berentsen, C., Hassanizadeh, S., Bezuijen, A., & Oung, O. (2006). Modelling of two-phase flow in porous media including non-equilibrium capillary pressure effects. Proceedings of the XVI International Conference on Computational Methods in Water Resources, Tech. Univ. of Denmark Copenhagen (pp. 1–11).
  • Biot, M., & Willis, D. (1957). The elastic coefficients of the theory of consolidation. Journal of Applied Mechanics, 24(4), 594–601. https://doi.org/10.1115/1.4011606
  • Bottero, S. (2009). Advances in the theory of capillarity in porous media. Wöhrmann Print Service.
  • Bottero, S., Hassanizadeh, S. M., Kleingeld, P., & Heimovaara, T. (2011). Nonequilibrium capillarity effects in two-phase flow through porous media at different scales. Water Resources Research, 47(10), WR010887. https://doi.org/10.1029/2011WR010887
  • Bouadjila, K., Mokrane, A., Saad, A. S., & Saad, M. (2018). Numerical analysis of a finite volume scheme for two incompressible phase flow with dynamic capillary pressure. Computers & Mathematics with Applications, 75(10), 3614–3631. https://doi.org/10.1016/j.camwa.2018.02.021
  • Bourgeat, A., & Panfilov, M. (1998). Effective two-phase flow through highly heterogeneous porous media: Capillary nonequilibrium effects. Computational Geosciences, 2(3), 191–215. https://doi.org/10.1023/A:1011502303588
  • Camps-Roach, G., O'Carroll, D. M., Newson, T. A., Sakaki, T., & Illangasekare, T. H. (2010). Experimental investigation of dynamic effects in capillary pressure: Grain size dependency and upscaling. Water Resources Research, 46(8). https://doi.org/10.1029/2009WR008881
  • Cao, X., & Pop, I. (2016). Degenerate two-phase porous media flow model with dynamic capillarity. Journal of Differential Equations, 260(3), 2418–2456. https://doi.org/10.1016/j.jde.2015.10.008
  • Carman, P. C. (1939). Permeability of saturated sands, soils and clays. The Journal of Agricultural Science, 29(2), 262–273. https://doi.org/10.1017/S0021859600051789
  • Corey, A. T. (1978). Mechanic of heterogeneous fluids in porous media. Soil Science, 125(5), 331.
  • Coussy, O. (2011). Mechanics and physics of porous solids. John Wiley & Sons.
  • Coussy, O., Dangla, P., Lassabatère, T., & Baroghel-Bouny, V. (2004). The equivalent pore pressure and the swelling and shrinkage of cement-based materials. Materials and Structures, 37(1), 15–20. https://doi.org/10.1007/BF02481623
  • Dahle, H. K., Celia, M. A., & Hassanizadeh, S. M. (2005). Bundle-of-tubes model for calculating dynamic effects in the capillary-pressure-saturation relationship. Transport in Porous Media, 58(1-2), 5–22. https://doi.org/10.1007/s11242-004-5466-4
  • Das, D. B., & Mirzaei, M. (2012). Dynamic effects in capillary pressure relationships for two-phase flow in porous media: Experiments and numerical analyses. AIChE Journal, 58(12), 3891–3903. https://doi.org/10.1002/aic.13777
  • Diamantopoulos, E., & Durner, W. (2012). Dynamic nonequilibrium of water flow in porous media: A review. Vadose Zone Journal, 11(3), vzj2011.0197. https://doi.org/10.2136/vzj2011.0197
  • Elzeftawy, A., & Mansell, R. (1975). Hydraulic conductivity calculations for unsaturated steady-state and transient-state flow in sand. Soil Science Society of America Journal, 39(4), 599–603. https://doi.org/10.2136/sssaj1975.03615995003900040013x
  • Friedman, S. P. (1999). Dynamic contact angle explanation of flow rate-dependent saturation-pressure relationships during transient liquid flow in unsaturated porous media. Journal of Adhesion Science and Technology, 13(12), 1495–1518. https://doi.org/10.1163/156856199X00613
  • Fučík, R., Mikyška, J., Sakaki, T., Beneš, M., & Illangasekare, T. H. (2010). Significance of dynamic effect in capillarity during drainage experiments in layered porous media. Vadose Zone Journal, 9(3), 697–708. https://doi.org/10.2136/vzj2009.0106
  • Genuchten, V., & Th, M. (1980). A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Science Society of America Journal, 44(5), 892–898.
  • Ghorbani, J., Nazem, M., & Carter, J. (2016). Numerical modelling of multiphase flow in unsaturated deforming porous media. Computers and Geotechnics, 71, 195–206. https://doi.org/10.1016/j.compgeo.2015.09.011
  • Ghourchian, S., Wyrzykowski, M., & Lura, P. (2018). A poromechanics model for plastic shrinkage of fresh cementitious materials. Cement and Concrete Research, 109, 120–132. https://doi.org/10.1016/j.cemconres.2018.04.013
  • Goel, G., Abidoye, L. K., Chahar, B. R., & Das, D. B. (2016). Scale dependency of dynamic relative permeability–satuartion curves in relation with fluid viscosity and dynamic capillary pressure effect. Environmental Fluid Mechanics, 16(5), 945–963. https://doi.org/10.1007/s10652-016-9459-y
  • Goel, G., & O'Carroll, D. M. (2011). Experimental investigation of nonequilibrium capillarity effects: Fluid viscosity effects. Water Resources Research, 47(9), WR009861. https://doi.org/10.1029/2010WR009861
  • Grondin, F., Bouasker, M., Mounanga, P., Khelidj, A., & Perronnet, A. (2010). Physico-chemical deformations of solidifying cementitious systems: Multiscale modelling. Materials and Structures, 43(1-2), 151–165. https://doi.org/10.1617/s11527-009-9477-z
  • Hassanizadeh, S. M. (2015). Advanced theories of two-phase flow in porous media. In J. Prieur Du Plessis, Editor, Handbook of porous media (pp. 47–62). Computational Mechanics Publications.
  • Hassanizadeh, S. M., Celia, M. A., & Dahle, H. K. (2002). Dynamic effect in the capillary pressure–saturation relationship and its impacts on unsaturated flow. Vadose Zone Journal, 1(1), 38–57. https://doi.org/10.2136/vzj2002.0038
  • Hassanizadeh, S. M., & Gray, W. G. (1990). Mechanics and thermodynamics of multiphase flow in porous media including interphase boundaries. Advances in Water Resources, 13(4), 169–186. https://doi.org/10.1016/0309-1708(90)90040-B
  • Hassanizadeh, S. M., & Gray, W. G. (1993). Thermodynamic basis of capillary pressure in porous media. Water Resources Research, 29(10), 3389–3405. https://doi.org/10.1029/93WR01495
  • Hillel, D. (2003). Introduction to environmental soil physics. Elsevier.
  • Hilpert, M. (2012). Velocity-dependent capillary pressure in theory for variably-saturated liquid infiltration into porous media. Geophysical Research Letters, 39(6). https://doi.org/10.1029/2012GL051114
  • Holt, E., & Leivo, M. (2004). Cracking risks associated with early age shrinkage. Cement and Concrete Composites, 26(5), 521–530. https://doi.org/10.1016/S0958-9465(03)00068-4
  • Hou, L., Chen, L., & Kibbey, T. C. (2012). Dynamic capillary effects in a small-volume unsaturated porous medium: Implications of sensor response and gas pressure gradients for understanding system dependencies. Water Resources Research, 48(11), WR012434. https://doi.org/10.1029/2012WR012434
  • Joekar-Niasar, V., & Hassanizadeh, S. (2011). Specific interfacial area: The missing state variable in two-phase flow equations? Water Resources Research, 47(5), WR009291. https://doi.org/10.1029/2010WR009291
  • Kalaydjian, F.-M. (1992). Dynamic capillary pressure curve for water/oil displacement in porous media: Theory vs. experiment. SPE Annual Technical Conference and Exhibition, Society of Petroleum Engineers.
  • Kunz, P., Zarikos, I. M., Karadimitriou, N. K., Huber, M., Nieken, U., & Hassanizadeh, S. M. (2016). Study of multi-phase flow in porous media: Comparison of SPH simulations with micro-model experiments. Transport in Porous Media, 114(2), 581–600. https://doi.org/10.1007/s11242-015-0599-1
  • Li, Y., & Li, J. (2014). Capillary tension theory for prediction of early autogenous shrinkage of self-consolidating concrete. Construction and Building Materials, 53, 511–516. https://doi.org/10.1016/j.conbuildmat.2013.12.010
  • Lo, W., Yang, C., Hsu, S., Chen, C., Yeh, C., & Hilpert, M. (2017). The dynamic response of the water retention curve in unsaturated soils during drainage to acoustic excitations. Water Resources Research, 53(1), 712–725. https://doi.org/10.1002/2016WR018833
  • Manthey, S., Hassanizadeh, S. M., Oung, O., & Helmig, R. (2004). Dynamic capillary pressure effects in two-phase flow through heterogeneous porous media (Vol. 55). Elsevier.
  • Mikelić, A. (2010). A global existence result for the equations describing unsaturated flow in porous media with dynamic capillary pressure. Journal of Differential Equations, 248(6), 1561–1577. https://doi.org/10.1016/j.jde.2009.11.022
  • Morel-Seytoux, H. J., Meyer, P. D., Nachabe, M., Tourna, J., Genuchten, M. v., & Lenhard, R. J. (1996). Parameter equivalence for the Brooks-Corey and van Genuchten soil characteristics: Preserving the effective capillary drive. Water Resources Research, 32(5), 1251–1258. https://doi.org/10.1029/96WR00069
  • Peszynska, M., & Yi, S.-Y. (2008). Numerical methods for unsaturated flow with dynamic capillary pressure in heterogeneous porous media. International Journal of Numerical Analysis & Modeling, 5, 126–149.
  • Qin, C.-Z., Guo, B., Celia, M., & Wu, R. (2019). Dynamic pore-network modeling of air-water flow through thin porous layers. Chemical Engineering Science, 202, 194–207.
  • Sakaki, T., O'Carroll, D. M., & Illangasekare, T. H. (2010). Direct quantification of dynamic effects in capillary pressure for drainage–wetting cycles. Vadose Zone Journal, 9(2), 424–437. https://doi.org/10.2136/vzj2009.0105
  • Samouh, H., Rozière, E., & Loukili, A. (2017). The differential drying shrinkage effect on the concrete surface damage: Experimental and numerical study. Cement and Concrete Research, 102, 212–224. https://doi.org/10.1016/j.cemconres.2017.09.016
  • Shahbodagh-Khan, B., Khalili, N., & Esgandani, G. A. (2015). A numerical model for nonlinear large deformation dynamic analysis of unsaturated porous media including hydraulic hysteresis. Computers and Geotechnics, 69, 411–423. https://doi.org/10.1016/j.compgeo.2015.06.008
  • Smiles, D., Vachaud, G., & Vauclin, M. (1971). A test of the uniqueness of the soil moisture characteristic during transient, nonhysteretic flow of water in a rigid soil. Soil Science Society of America Journal, 35(4), 534–539. https://doi.org/10.2136/sssaj1971.03615995003500040018x
  • Smith, D., Scherer, G., & Anderson, J. (1995). Shrinkage during drying of silica gel. Journal of Non-Crystalline Solids, 188(3), 191–206. https://doi.org/10.1016/0022-3093(95)00187-5
  • Stauffer, F. (1978). Time dependence of the relations between capillary pressure, water content and conductivity during drainage of porous media. IAHR Symposium on Scale Effects in Porous Media, Thessaloniki, Greece (Vol. 29, pp. 3–35).
  • Szymkiewicz, A. (2012). Modelling water flow in unsaturated porous media: Accounting for nonlinear permeability and material heterogeneity. Springer Science & Business Media.
  • Terzaghi, K. (1951). Theoretical soil mechanics. Chapman and Hall, Limited.
  • Vachaud, G., Vauclin, M., & Wakil, M. (1972). A study of the uniqueness of the soil moisture characteristic during desorption by vertical drainage. Soil Science Society of America Journal, 36(3), 531–532. https://doi.org/10.2136/sssaj1972.03615995003600030044x
  • Vlahinić, I., Jennings, H. M., & Thomas, J. J. (2009). A constitutive model for drying of a partially saturated porous material. Mechanics of Materials, 41(3), 319–328. https://doi.org/10.1016/j.mechmat.2008.10.011
  • Wang, S., Yu, C., Sang, G., Yu, R., & Cheng, F. (2020). An oil–water two-phase reservoir numerical simulation coupled with dynamic capillary force based on the full-implicit method. Computers & Mathematics with Applications, 79(9), 2527–2549. https://doi.org/10.1016/j.camwa.2019.11.013
  • Wang, X., & Nackenhorst, U. (2020). A coupled bio-chemo-hydraulic model to predict porosity and permeability reduction during microbially induced calcite precipitation. Advances in Water Resources, 140, 103563. https://doi.org/10.1016/j.advwatres.2020.103563
  • Weitz, D., Stokes, J., Ball, R., & Kushnick, A. (1987). Dynamic capillary pressure in porous media: Origin of the viscous-fingering length scale. Physical Review Letters, 59(26), 2967–2970. https://doi.org/10.1103/PhysRevLett.59.2967
  • Wen, T., Shao, L., & Guo, X. (2019). Effect of hysteresis on hydraulic properties of soils under multiple drying and wetting cycles. European Journal of Environmental and Civil Engineering, 1–13. https://doi.org/10.1080/19648189.2019.1600037
  • Wheeler, S., Sharma, R., & Buisson, M. (2003). Coupling of hydraulic hysteresis and stress–strain behaviour in unsaturated soils. Géotechnique, 53(1), 41–54. https://doi.org/10.1680/geot.2003.53.1.41
  • Wildenschild, D., Hopmans, J., Rivers, M., & Kent, A. (2005). Quantitative analysis of flow processes in a sand using synchrotron-based X-ray microtomography. Vadose Zone Journal, 4(1), 112–126. https://doi.org/10.2113/4.1.112
  • Wildenschild, D., Hopmans, J., & Simunek, J. (2001). Flow rate dependence of soil hydraulic characteristics. Soil Science Society of America Journal, 65(1), 35–48. https://doi.org/10.2136/sssaj2001.65135x
  • Wittmann, F. (1976). On the action of capillary pressure in fresh concrete. Cement and Concrete Research, 6(1), 49–56. https://doi.org/10.1016/0008-8846(76)90050-8
  • Zhou, A., Wu, S., Li, J., & Sheng, D. (2018). Including degree of capillary saturation into constitutive modelling of unsaturated soils. Computers and Geotechnics, 95, 82–98. https://doi.org/10.1016/j.compgeo.2017.09.017
  • Zhou, C., & Ng, C. W. W. (2014). A new and simple stress-dependent water retention model for unsaturated soil. Computers and Geotechnics, 62, 216–222. https://doi.org/10.1016/j.compgeo.2014.07.012
  • Zhuang, L., Hassanizadeh, S. M., Qin, C. Z., & de Waal, A. (2017). Experimental investigation of hysteretic dynamic capillarity effect in unsaturated flow. Water Resources Research, 53(11), 9078–9088. https://doi.org/10.1002/2017WR020895

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.