126
Views
1
CrossRef citations to date
0
Altmetric
Original Articles

Experimental feasibility for the incorporation of solid waste aggregates in masonry hollow blocks

, , , &
Pages 7177-7191 | Received 19 Jan 2021, Accepted 15 Sep 2021, Published online: 12 Oct 2021

References

  • AFNOR - NF EN 12939. Thermal performance of building materials and products - Determination of thermal resistance by means of guarded hot plate and heat flow meter methods - Thick products of high and medium thermal resistance, March 2001.
  • Ali, Y. A. Y., Fahmy, E. H. A., AbouZeid, M. N., Shaheen, Y. B. I., & Mooty, M. N. A. (2020). Use of expanded polystyrene wastes in developing hollow block masonry units. Construction and Building Materials, 241, 118149. https://doi.org/10.1016/j.conbuildmat.2020.118149
  • Al-Tamimi, A., Al-Amoudi, O., Al-Osta, M., Mohammed-Ali, R., & Ahmad, A. (2020). Effect of insulation materials and cavity layout on heat transfer of concrete masonry hollow blocks. Construction and Building Materials, 254, 119300–119319. https://doi.org/10.1016/j.conbuildmat.2020.119300
  • An, F.-C., Zhang, F.-Y., & Hou, C.-C. (2020). Influence of mechanical properties of concrete on the failure behaviour of FRP-to-concrete interface. Construction and Building Materials, 264, 120572. https://doi.org/10.1016/j.conbuildmat.2020.120572
  • Arun Solomon, A., & Hemalatha, G. (2020). Characteristics of expanded polystyrene (EPS) and its impact on mechanical and thermal performance of insulated concrete form (ICF) system. Structures, 23, 204–213. https://doi.org/10.1016/j.istruc.2019.10.019
  • ASTM-C-129. (2017). Standard specification for nonloadbearing concrete masonry units (pp. 3). ASTM-C-129.
  • ASTM-C-140. (2018). Standard test methods for sampling and testing concrete masonry units and related units (Vol. 17, pp. 32). ASTM-C-140.
  • ASTM-C-90. (2016). Standard Specification for Loadbearing Concrete Masonry Units (Vol. 5, pp. 33). ASTM-C-90.
  • Bai, Z., Liu, Y., Yang, J., & He, S. (2019). Exploring the dynamic response and energy dissipation capacity of functionally graded EPS concrete. Construction and Building Materials, 227, 116574. https://doi.org/10.1016/j.conbuildmat.2019.07.300
  • Basha, S. I., Ali, M. R., Al-Dulaijan, S. U., & Maslehuddin, M. (2020). Mechanical and thermal properties of lightweight recycled plastic aggregate concrete. Journal of Building Engineering, 32, 101710. https://doi.org/10.1016/j.jobe.2020.101710
  • Bhardwaj, B., & Kumar, P. (2017). Waste foundry sand in concrete: A review. Construction and Building Materials, 156, 661–674. https://doi.org/10.1016/j.conbuildmat.2017.09.010
  • Bobet, A. (2000). The initiation of secondary cracks in compression. Engineering Fracture Mechanics, 66(2), 187–219. https://doi.org/10.1016/S0013-7944(00)00009-6
  • Chandni, T. J., & Anand, K. B. (2018). Utilization of recycled waste as filler in foam concrete. Journal of Building Engineering, 19, 154–160. https://doi.org/10.1016/j.jobe.2018.04.032
  • Cui, C., Huang, Q., Li, D., Quan, C., & Li, H. (2016). Stress–strain relationship in axial compression for EPS concrete. Construction and Building Materials, 105, 377–383. https://doi.org/10.1016/j.conbuildmat.2015.12.159
  • Davraz, M., Koru, M., & Akdağ, A. E. (2019). Numerical and experimental investigation of the effect of foam concrete as filler on design thermal conductivity of lightweight masonry block. Journal of Thermal Analysis and Calorimetry, 137(6), 1867–1875. https://doi.org/10.1007/s10973-019-08091-1
  • de Moraes, E. G., Sangiacomo, L., Stochero, N. P., Arcaro, S., Barbosa, L. R., Lenzi, A., Siligardi, C., & Novaes de Oliveira, A. P. (2019). Innovative thermal and acoustic insulation foam by using recycled ceramic shell and expandable styrofoam (EPS) wastes. Waste Management, 89, 336–344. https://doi.org/10.1016/j.wasman.2019.04.019
  • de Souza Kazmierczak, C., Dutra Schneider, S., Aguilera, O., Albert, C. C., & Mancio, M. (2020). Rendering mortars with crumb rubber: Mechanical strength, thermal and fire properties and durability behaviour. Construction and Building Materials, 253, 119002. https://doi.org/10.1016/j.conbuildmat.2020.119002
  • Dixit, A., Pang, S. D., Kang, S.-H., & Moon, J. (2019). Lightweight structural cement composites with expanded polystyrene (EPS) for enhanced thermal insulation. Cement and Concrete Composites, 102, 185–197. https://doi.org/10.1016/j.cemconcomp.2019.04.023
  • Fraile-Garcia, E., Ferreiro-Cabello, J., Mendivil-Giro, M., & Vicente-Navarro, A. S. (2018). Thermal behaviour of hollow blocks and bricks made of concrete doped with waste tyre rubber. Construction and Building Materials, 176, 193–200. https://doi.org/10.1016/j.conbuildmat.2018.05.015
  • Gil, H., Ortega, A., & Pérez, J. (2017). Mechanical behavior of mortar reinforced with sawdust waste. Procedia Engineering, 200, 325–332. https://doi.org/10.1016/j.proeng.2017.07.046
  • Jouni, A., & Mourtada, A. (2015). Tendances de L’efficacité Énergétique au Liban, Tendances de L’efficacité Énergétique au Liban (ALMEE) (pp. 44).
  • Khatib, J. M. Herki, B. A., & Elkordi A. (2019). 7 - Characteristics of concrete containing EPS, In Fernando Pacheco-Torgal, Jamal Khatib, Francesco Colangelo, Rabin Tuladhar (Eds.), Woodhead Publishing Series in Civil and Structural Engineering, Use of Recycled Plastics in Eco-efficient Concrete, Woodhead Publishing, (pp. 137–165). ISBN 9780081026762, https://doi.org/10.1016/B978-0-08-102676-2.00007-4
  • Kus, H., Özkan, E., Göcer, Ö., & Edis, E. (2013). Hot box measurements of pumice aggregate concrete hollow block walls. Construction and Building Materials, 38, 837–845. https://doi.org/10.1016/j.conbuildmat.2012.09.053
  • Liu, N., & Chen, B. (2014). Experimental study of the influence of EPS particle size on the mechanical properties of EPS lightweight concrete. Construction and Building Materials, 68, 227–232. https://doi.org/10.1016/j.conbuildmat.2014.06.062
  • Meng, Y., Ling, T.-C., & Mo, K. H. (2018). Recycling of wastes for value-added applications in concrete blocks: An overview. Resources, Conservation and Recycling, 138, 298–312. https://doi.org/10.1016/j.resconrec.2018.07.029
  • Michels, C., Güths, S., Marinoski, D. L., & Lamberts, R. (2021). Thermal performance and thermal resistance of fibre cement roof tiles: Experimental study. Energy and Buildings, 231, 110569. https://doi.org/10.1016/j.enbuild.2020.110569
  • Mourtada, A. (2010). Energie, changement climatique et bâtiment en Méditerranée: étude nationale Liban. Environnement et développement en Méditerranée.
  • Prusty, J. K., Patro, S. K., & Basarkar, S. S. (2016). Concrete using agro-waste as fine aggregate for sustainable built environment – A review. International Journal of Sustainable Built Environment, 5(2), 312–333. https://doi.org/10.1016/j.ijsbe.2016.06.003
  • Sassine, E., Cherif, Y., Dgheim, J., & Antczak, E. (2020a). Experimental and numerical thermal assessment of Lebanese traditional hollow blocks. International Journal of Thermophysics, 41(4), 47. https://doi.org/10.1007/s10765-020-02626-7
  • Sassine, E., Cherif, Y., Dgheim, J., & Antczak, E. (2020b). Experimental and numerical thermal assessment of EPS concrete hollow blocks in Lebanon. Journal of Materials in Civil Engineering, 32(8), 05020007. https://doi.org/10.1061/(ASCE)MT.1943-5533.0003335
  • Sassine, E., Cherif, Y., Dgheim, J., & Antczak, E. (2020c). Investigation of the mechanical and thermal performances of concrete hollow blocks. SN Applied Sciences, 2(12), 2006. https://doi.org/10.1007/s42452-020-03881-x
  • Sayadi, A. A., Tapia, J. V., Neitzert, T. R., & Clifton, G. C. (2016). Effects of expanded polystyrene (EPS) particles on fire resistance, thermal conductivity and compressive strength of foamed concrete. Construction and Building Materials, 112, 716–724. https://doi.org/10.1016/j.conbuildmat.2016.02.218
  • Soto, I. I., Ramalho, M. A., & Izquierdo, O. S. (2013). Post-cracking behavior of blocks, prisms, and small concrete walls reinforced with plant fiber. Revista IBRACON de Estruturas e Materiais, 6(4), 598–612. https://doi.org/10.1590/S1983-41952013000400006
  • Wang, J., Dai, Q., Si, R., & Guo, S. (2019). Mechanical, durability, and microstructural properties of macro synthetic polypropylene (PP) fiber-reinforced rubber concrete. Journal of Cleaner Production, 234, 1351–1364. https://doi.org/10.1016/j.jclepro.2019.06.272
  • Xu, R., He, T., Da, Y., Liu, Y., Li, J., & Chen, C. (2019). Utilizing wood fiber produced with wood waste to reinforce autoclaved aerated concrete. Construction and Building Materials, 208, 242–249. https://doi.org/10.1016/j.conbuildmat.2019.03.030
  • Yan, R., Yang, S., Guo, M.-Z., & Sun Poon, C. (2018). Comparative evaluation of fire resistance of partition wall blocks prepared with waste materials. Journal of Cleaner Production, 182, 156–165. https://doi.org/10.1016/j.jclepro.2018.02.020
  • Yang, Y. (2017). Innovative non-destructive methodology for energy diagnosis of building envelope.
  • Yao, X., Wang, W., Liu, M., Yao, Y., & Wu, S. (2019). Synergistic use of industrial solid waste mixtures to prepare ready-to-use lightweight porous concrete. Journal of Cleaner Production, 211, 1034–1043. https://doi.org/10.1016/j.jclepro.2018.11.252

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.