234
Views
0
CrossRef citations to date
0
Altmetric
Original Articles

Dynamic mechanical properties and constitutive model for jointed mudstone samples subjected to cyclic loading

, , , ORCID Icon &
Pages 7240-7266 | Received 17 May 2021, Accepted 19 Sep 2021, Published online: 09 Oct 2021

References

  • Aydan, Ö. (2016). Large rock slope failures induced by recent earthquakes. Rock Mechanics and Rock Engineering, 49(6), 2503–2524. https://doi.org/10.1007/s00603-016-0975-3
  • Aydan, Ö., Ohta, Y., Daido, M., Kumsar, H., Genis, M., Tokashiki, N., Ito, T., & Amini, M. (2001). Earthquakes as a rock dynamic problem and their effects on rock engineering structures. In Y. Zhou, & J. Zhao (Eds.), Advances in rock dynamics and applications (pp. 341–422.). CRC Press, Taylor and Francis Group.
  • Bagde, M. N., & Petroš, V. (2005). Fatigue properties of intact sandstone samples subjected to dynamic uniaxial cyclical loading. International Journal of Rock Mechanics and Mining Sciences, 42(2), 237–250. https://doi.org/10.1016/j.ijrmms.2004.08.008
  • Brown, E. T., & Hudson, J. A. (1973). Fatigue failure characteristics of some models of jointed rock. Earthquake Engineering & Structural Dynamics, 2(4), 379–386. https://doi.org/10.1002/eqe.4290020407
  • Burdine, N. T. (1963). Rock failure under dynamic loading conditions. Society of Petroleum Engineers Journal, 3(1), 1–8. https://doi.org/10.2118/481-PA
  • Cerfontaine, B., Charlier, R., Collin, F., & Taiebat, M. (2017). Validation of a new elastoplastic constitutive model dedicated to the cyclic behaviour of brittle rock materials. Rock Mechanics and Rock Engineering, 50(10), 2677–2694. https://doi.org/10.1007/s00603-017-1258-3
  • China Earthquake Administration-CEA. (2015). ‘’Ground Motion Parameter Zoning Map of China (GB18306—2015).’’ Institute of geophysics, CEA. Retrieved August 2, 2020, from http://www.gb18306.cn/.
  • Feng, X. Q., Qin, Q. H., & Yu, S. W. (2004). Quasi-micromechanical damage model for brittle solids with interacting microcracks. Mechanics of Materials, 36(3), 261–273. https://doi.org/10.1016/S0167-6636(03)00021-8
  • Ge, X. R. (1987). Study on deformation and strength behaviour of the large-sized triaxial rock samples under cyclic loading. Rock and Soil Mechanics, 8(2), 13–21. (in Chinese).
  • Ghuzlan, K. A., & Carpenter, S. H. (2006). Fatigue damage analysis in asphalt concrete mixtures using the dissipated energy approach. Canadian Journal of Civil Engineering, 33(7), 890–901. https://doi.org/10.1139/l06-032
  • He, M., Li, N., Zhu, C., Chen, Y., & Wu, H. (2019). Experimental investigation and damage modeling of salt rock subjected to fatigue loading. International Journal of Rock Mechanics and Mining Sciences, 114, 17–23. https://doi.org/10.1016/j.ijrmms.2018.12.015
  • Huang, B. X., & Liu, J. W. (2013). The effect of loading rate on the behavior of samples composed of coal and rock. International Journal of Rock Mechanics and Mining Sciences, 61, 23–30. https://doi.org/10.1016/j.ijrmms.2013.02.002
  • Hwang, J. Y., Monteiro, S. N., Bai, C. G., Carpenter, J., Cai, M. D., Firrao, D., & Kim, B. G. (2012). Characterization of minerals, metals and materials. [M]. John Wiley & Sons, Inc.
  • Kim, I. B., Ri, C. S., & So, Y. I. (2016). A damage mechanics model of materials with voids and cracks. International Journal of Damage Mechanics, 25(6), 773–796. https://doi.org/10.1177/1056789516640037
  • Lemaitre, J. (1996). A course on damage mechanics (2nd ed.). Springer-Verlag.
  • Li, N., Chen, W. L., & Zhang, P. (2001a). Strength properties of the jointed rock mass medium under dynamic cyclic loading. Progress in Natural Science: Materials, 11(3), 39–43.
  • Li, N., Chen, W., Zhang, P., & Swoboda, G. (2001b). The mechanical properties and a fatigue-damage model for jointed rock masses subjected to dynamic cyclical loading. International Journal of Rock Mechanics and Mining Sciences, 38(7), 1071–1079. https://doi.org/10.1016/S1365-1609(01)00058-2
  • Li, T. T., Pei, X. J., Wang, D. P., Huang, R. Q., & Tang, H. (2019). Nonlinear behavior and damage model for fractured rock under cyclic loading based on energy dissipation principle. Engineering Fracture Mechanics, 206, 330–341. https://doi.org/10.1016/j.engfracmech.2018.12.010
  • Liu, Y., & Dai, F. (2018). A damage constitutive model for intermittent jointed rocks under cyclic uniaxial compression. International Journal of Rock Mechanics and Mining Sciences, 103, 289–301. https://doi.org/10.1016/j.ijrmms.2018.01.046
  • Liu, Y., Dai, F., Dong, L., Xu, N., & Feng, P. (2018b). Experimental investigation on the fatigue mechanical properties of intermittently jointed rock models under cyclic uniaxial compression with different loading parameters. Rock Mechanics and Rock Engineering, 51(1), 47–68. https://doi.org/10.1007/s00603-017-1327-7
  • Liu, E. L., Huang, R. Q., & He, S. (2012). Effects of frequency on the dynamic properties of intact rock samples subjected to cyclic loading under confining pressure conditions. Rock Mechanics and Rock Engineering, 45(1), 89–102. https://doi.org/10.1007/s00603-011-0185-y
  • Liu, M. X., & Liu, E. L. (2017). Dynamic mechanical properties of artificial jointed rock samples subjected to cyclic triaxial loading. International Journal of Rock Mechanics and Mining Sciences, 98, 54–66. https://doi.org/10.1016/j.ijrmms.2017.07.005
  • Liu, X. R., Liu, Y. Q., He, C. M., & Li, X. W. (2018a). Dynamic stability analysis of the bedding rock slope considering the vibration deterioration effect of the structural plane.’’ B. Bulletin of Engineering Geology and the Environment, 77(1), 87–103. https://doi.org/10.1007/s10064-016-0945-8
  • Liu, E. L., Zhang, J. H., He, S. M., Zhang, S. S., & Ge, K. (2013). Binary medium model of rock subjected to cyclic loading. Journal of ChongQing University of Technology-Natural Science, 27(9). (in Chinese).
  • Li, N., Zhang, P., Chen, Y., & Swoboda, G. (2002). Dynamic fatigue properties of the cracked sandstone samples under freezing and cyclic loading. Chinese Journal of Geotechnical Engineering, 24(5), 636–639.
  • Li, Y. Y., Zhang, S. C., & Zhang, X. (2018). Classification and fractal characteristics of coal rock fragments under uniaxial cyclic loading conditions. Arabian Journal of Geosciences, 11(9), 201. https://doi.org/10.1007/s12517-018-3534-2
  • Liu, E. L. (2005). Research on breakage mechanism of structural blocks and binary medium model for geomaterials [PhD Thesis]. Tsinghua University. (in Chinese).
  • Momeni, A., Karakus, M., Khanlari, G. R., & Heidari, M. (2015). Effects of cyclic loading on the mechanical properties of a granite. International Journal of Rock Mechanics and Mining Sciences, 77, 89–96. https://doi.org/10.1016/j.ijrmms.2015.03.029
  • Nandakumaran, A. K. (2007). An introduction and application to homogenization. Bulletin of Marathwada Mathematical Society, 8(2), 147–158.
  • Que, X., Zhu, Z., & Lu, W. (2020). Anisotropic constitutive model of pentagonal prism columnar jointed rock mass. Bulletin of Engineering Geology and the Environment, 79(1), 269–286. https://doi.org/10.1007/s10064-019-01521-2
  • Rao, M. V. M. S., & Ramana, Y. V. (1992). A study of progressive failure of rock under cyclic loading by ultrasonic and AE monitoring techniques. Rock Mechanics and Rock Engineering, 25(4), 237–251. https://doi.org/10.1007/BF01041806
  • Sandor, B. I. (1972). Fundamentals of cyclic stress and strain. Univ of Wisconsin Pr.
  • Scholz, C. H., & Koczynski, T. A. (1979). Dilatancy anisotropy and the response of rock to large cyclic loads. Journal of Geophysical Research, 84(B10), 5525–5534. https://doi.org/10.1029/JB084iB10p05525
  • Shen, Z. J. (2006). Progress in binary medium modeling of geomaterials. In W. Wu, H. S. Yu (Eds.), Trends in geomechanics (pp. 77–99). Springer.
  • Shen, Z. J., & Chen, T. L. (2002). Breakage mechanisms for geomaterials basic concepts, goals and task. In: Chinese Society of Rock Mechanics and Engineering, Seventh Academic Conference Proceedings (in Chinese).
  • Swoboda, G., Shen, X. P., & Rosas, L. (1998). Damage model for jointed rock mass and its application to tunnelling. Computers and Geotechnics, 22(3-4), 183–203. https://doi.org/10.1016/S0266-352X(98)00009-3
  • Tao, Z., & Mo, H. (1990). An experimental study and analysis of the behaviour of rock under cyclic loading. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 27(1), 51–56.
  • Wang, W. X. (2004). Rock mass mechanics. CSU press. (in Chinese).
  • Yoshinaka, R., Tran, T. V., & Osada, M. (1997). Mechanical behavior of soft rocks under triaxial cyclic loading conditions. International Journal of Rock Mechanics and Mining Sciences, 34(3-4), 3540–2147483647.
  • Yu, D., Liu, E. L., Sun, P., Xiang, B., & Zheng, Q. S. (2020). Mechanical properties and binary-medium constitutive model for semi-through jointed mudstone samples. International Journal of Rock Mechanics and Mining Sciences, 132, 104376. https://doi.org/10.1016/j.ijrmms.2020.104376
  • Zhang, Z., Wang, T., Wu, S., Tang, H., & Liang, C. (2017). Seismic performance of loess-mudstone slope by centrifuge tests. Bulletin of Engineering Geology and the Environment, 76(2), 671–679. https://doi.org/10.1007/s10064-015-0846-2
  • Zhang, P., Xu, J.-g., & Li, N. (2008). Fatigue properties analysis of cracked rock based on fracture evolution process. Journal of Central South University of Technology, 15(1), 95–99. https://doi.org/10.1007/s11771-008-0019-6
  • Zheng, Q. S., Liu, E. L., Sun, P., Liu, M. X., & Yu, D. (2020). Dynamic and damage properties of artificial jointed samples subjected to cyclic triaxial loading at various frequencies. International Journal of Rock Mechanics and Mining Sciences, 128, 104243. https://doi.org/10.1016/j.ijrmms.2020.104243
  • Zhou, Y. Q., Sheng, Q., Li, N. N., Fu, X. D., Zhang, Z. P., & Gao, L. S. (2020). A constitutive model for rock materials subjected to triaxial cyclic compression. Mechanics of Materials, 144, 103341. https://doi.org/10.1016/j.mechmat.2020.103341

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.