244
Views
1
CrossRef citations to date
0
Altmetric
Original Articles

Numerical and statistical investigation of the performance of closed-cell aluminium foam as a seismic isolation layer for tunnel linings

, ORCID Icon, , &
Pages 7282-7306 | Received 24 May 2020, Accepted 22 Sep 2021, Published online: 08 Nov 2021

References

  • Alwesabi, E. A., Bakar, B. A., Alshaikh, I. M., & Akil, H. M. (2020). Experimental investigation on mechanical properties of plain and rubberised concretes with steel–polypropylene hybrid fibre. Construction and Building Materials, 233, 117194. https://doi.org/10.1016/j.conbuildmat.2019.117194
  • Amran, Y. H. M., Farzadnia, N., & Ali, A. A. A. (2015). Properties and applications of foamed concrete; a review. Construction and Building Materials, 101, 990–1005. https://doi.org/10.1016/j.conbuildmat.2015.10.112
  • Anato, N. J., Assogba, O. C., Tang, A., & Youssouf, D. (2021). Numerical investigation of seismic isolation layer performance for tunnel lining in Shanghai soft ground. Arabian Journal for Science and Engineering, 1–18.
  • Anato, N. J., Chen, J., Tang, A., & Assogba, O. C. (2021). Numerical investigation of ground settlements induced by the construction of Nanjing WeiSanLu tunnel and parametric analysis. Arabian Journal for Science and Engineering, 1–17.
  • Argyroudis, S., Tsinidis, G., Gatti, F., & Pitilakis, K. (2017). Effects of SSI and lining corrosion on the seismic vulnerability of shallow circular tunnels. Soil Dynamics and Earthquake Engineering, 98, 244–256. https://doi.org/10.1016/j.soildyn.2017.04.016
  • Argyroudis, S. A., & Pitilakis, K. D. (2012). Seismic fragility curves of shallow tunnels in alluvial deposits. Soil Dynamics and Earthquake Engineering, 35, 1–12. https://doi.org/10.1016/j.soildyn.2011.11.004
  • Assogba, O. C., Tan, Y., Dong, W., Lv, H., & Anato, N. J. (2021). Field evaluation and statistical analysis of the dynamic response of semi-rigid pavement under full-scale moving truck load. Road Materials and Pavement Design, 1–29. https://doi.org/10.1080/14680629.2021.1987304.
  • Assogba, O. C., Tan, Y., Zhou, X., Zhang, C., & Anato, J. N. (2020). Numerical investigation of the mechanical response of semi-rigid base asphalt pavement under traffic load and nonlinear temperature gradient effect. Construction and Building Materials, 235, 117406. https://doi.org/10.1016/j.conbuildmat.2019.117406
  • Avanaki, M. J. (2019). Response modification factors for seismic design of steel fiber reinforced concrete segmental tunnels. Construction and Building Materials, 211, 1042–1049. https://doi.org/10.1016/j.conbuildmat.2019.03.275
  • Avanaki, M. J., Hoseini, A., Vahdani, S., & de la Fuente, A. (2018). Numerical-aided design of fiber reinforced concrete tunnel segment joints subjected to seismic loads. Construction and Building Materials, 170, 40–54. https://doi.org/10.1016/j.conbuildmat.2018.02.219
  • Brennan, A. J., Thusyanthan, N. I., & Madabhushi, S. P. G. (2005). Evaluation of shear modulus and damping in dynamic centrifuge tests. Journal of Geotechnical and Geoenvironmental Engineering, 131(12), 1488–1497. https://doi.org/10.1061/(ASCE)1090-0241(2005)131:12(1488)
  • Bryman, A., & Cramer, D. (1996). Quantitative data analysis with minitab: A guide for social scientists. Psychology Press.
  • Chazelas, J., Escoffier, S., Garnier, J., Thorel, L., & Rault, G. (2008). Original technologies for proven performances for the new LCPC earthquake simulator. Bulletin of Earthquake Engineering, 6(4), 723–728. https://doi.org/10.1007/s10518-008-9096-z
  • Chen, H. J., Li, X. J., Yan, W. M., Chen, S. C., & Zhang, X. M. (2017). Shaking table test of immersed tunnel considering the geological condition. Engineering Geology, 227, 93–107. https://doi.org/10.1016/j.enggeo.2017.05.014
  • Chen, Z. Y., Liang, S. B., Shen, H., & He, C. (2018). Dynamic centrifuge tests on effects of isolation layer and cross-section dimensions on shield tunnels. Soil Dynamics and Earthquake Engineering, 109, 173–187. https://doi.org/10.1016/j.soildyn.2018.03.002
  • Chen, Z. Y., & Shen, H. (2014). Dynamic centrifuge tests on isolation mechanism of tunnels subjected to seismic shaking. Tunnelling and Underground Space Technology, 42, 67–77. https://doi.org/10.1016/j.tust.2014.02.005
  • Choudhury, D., Patil, M., Ranjith, P., & Zhao, J. (2019). Dynamic tunnel–soil interaction in soft soils considering site-specific seismic ground response. In Frontiers in geotechnical engineering (pp. 249–271). Springer.
  • Cilingir, U., & Madabhushi, S. G. (2011a). Effect of depth on seismic response of circular tunnels. Canadian Geotechnical Journal, 48(1), 117–127. https://doi.org/10.1139/T10-047
  • Cilingir, U., & Madabhushi, S. P. G. (2011b). Effect of depth on the seismic response of square tunnels. Soils and Foundations, 51(3), 449–457. https://doi.org/10.3208/sandf.51.449
  • Dassault, S. (2011). Abaqus analysis user's manual.
  • Dassault, S. (2016). Abaqus theory guide.
  • Deshpande, V. S., & Fleck, N. A. (2000). Isotropic constitutive models for metallic foams. Journal of the Mechanics and Physics of Solids, 48(6-7), 1253–1283. https://doi.org/10.1016/S0022-5096(99)00082-4
  • Fabozzi, S., & Bilotta, E. (2016). Behaviour of a segmental tunnel lining under seismic actions. Procedia Engineering, 158, 230–235. https://doi.org/10.1016/j.proeng.2016.08.434
  • Ghani, J. A., Choudhury, I. A., & Hassan, H. H. (2004). Application of Taguchi method in the optimization of end milling parameters. Journal of Materials Processing Technology, 145(1), 84–92. https://doi.org/10.1016/S0924-0136(03)00865-3
  • Golestanipour, M., Babakhani, A., & Zebarjad, S. M. (2015). An investigation on the energy absorption of aluminium foam core sandwich panel via quasi-static perforation test. Iranian Journal of Science and Technology-Transactions of Mechanical Engineering, 39(M1), 185–196.
  • Hatzigeorgiou, G. D., & Beskos, D. E. (2010). Soil–structure interaction effects on seismic inelastic analysis of 3-D tunnels. Soil Dynamics and Earthquake Engineering, 30(9), 851–861. https://doi.org/10.1016/j.soildyn.2010.03.010
  • Hou, W., Shen, J., Lu, G. X., & Ong, L. (2006). Strength and energy absorption of aluminium foam under quasi-static shear loading. Key Engineering Materials, 312, 269–274. https://doi.org/10.4028/www.scientific.net/KEM.312.269
  • Huang, Z. K., Pitilakis, K., Tsinidis, G., Argyroudis, S., & Zhang, D. M. (2020). Seismic vulnerability of circular tunnels in soft soil deposits: The case of Shanghai metropolitan system. Tunnelling and Underground Space Technology, 98, 103341. doi: ARTN 103341https://doi.org/10.1016/j.tust.2020.103341
  • Huo, H., Bobet, A., Fernandez, G., & Ramirez, J. (2005). Load transfer mechanisms between underground structure and surrounding ground: Evaluation of the failure of the Daikai Station. Journal of Geotechnical and Geoenvironmental Engineering, 131(12), 1522–1533. https://doi.org/10.1061/(ASCE)1090-0241(2005)131:12(1522)
  • Hwang, J. H., & Lu, C. C. (2007). Seismic capacity assessment of old Sanyi railway tunnels. Tunnelling and Underground Space Technology, 22(4), 433–449. https://doi.org/10.1016/j.tust.2006.09.002
  • Kokusho, T., Yoshida, Y., & Esashi, Y. (1982). Dynamic properties of soft clay for wide strain range. Soils and Foundations, 22(4), 1–18. https://doi.org/10.3208/sandf1972.22.4_1
  • Lanzano, G., Bilotta, E., Russo, G., & Silvestri, F. (2015). Experimental and numerical study on circular tunnels under seismic loading. European Journal of Environmental and Civil Engineering, 19(5), 539–563. https://doi.org/10.1080/19648189.2014.893211
  • Lei, Q., Ren, J., Ren, H., Chao, H., & Du, W. (2019). Study on dynamic characteristic of closed-cell aluminium foam. Vibroengineering Procedia, 28, 142–147. https://doi.org/10.21595/vp.2019.20998
  • Li, C., Chen, W. Z., Zhao, W. S., Suzuki, T., & Shishikura, Y. (2019). A study on seismic isolation of shield tunnel using quasi-static finite element method. Shock and Vibration, 2019, 1–12. https://doi.org/10.1155/2019/6209409
  • Li, T. B. (2012). Damage to mountain tunnels related to the Wenchuan earthquake and some suggestions for aseismic tunnel construction. Bulletin of Engineering Geology and the Environment, 71(2), 297–308. https://doi.org/10.1007/s10064-011-0367-6
  • Li, Z., Escoffier, S., & Kotronis, P. (2013). Using centrifuge tests data to identify the dynamic soil properties: Application to Fontainebleau sand. Soil Dynamics and Earthquake Engineering, 52, 77–87. https://doi.org/10.1016/j.soildyn.2013.05.004
  • Liu, J. B., Wang, W. H., & Dasgupta, G. (2014). Pushover analysis of underground structures: Method and application. Science China Technological Sciences, 57(2), 423–437. https://doi.org/10.1007/s11431-013-5430-z
  • Lysmer, J., & Kuhlemeyer, R. L. (1969). Finite Dynamic Model for Infinite Media. Journal of the Engineering Mechanics Division, 95(4), 859–877. https://doi.org/10.1061/JMCEA3.0001144
  • Ma, S. S., Chen, W. Z., & Zhao, W. S. (2019). Mechanical properties and associated seismic isolation effects of foamed concrete layer in rock tunnel. Journal of Rock Mechanics and Geotechnical Engineering, 11(1), 159–171. https://doi.org/10.1016/j.jrmge.2018.06.006
  • Marr, W. A., & Christian, J. T. (1972). Finite element analysis of elasto-plastic soils. School of Engineering, Massachusetts Institute of Technology.
  • Minitab, I. (2003). MINITAB user’s guide 2: Data analysis and quality tools.
  • Mobasher, B. (2011). Mechanics of fiber and textile reinforced cement composites. CRC Press.
  • Monforte, L., Arroyo, M., Gens, A., & Carbonell, J. M. (2015). Explicit finite deformation stress integration of the elasto-plastic constitutive equations. In Computer methods and recent advances in geomechanics (pp. 267–272).
  • Montanini, R. (2005). Measurement of strain rate sensitivity of aluminium foams for energy dissipation. International Journal of Mechanical Sciences, 47(1), 26–42. https://doi.org/10.1016/j.ijmecsci.2004.12.007
  • Olurin, O. B., Fleck, N. A., & Ashby, M. F. (2000). Deformation and fracture of aluminium foams. Materials Science and Engineering: A, 291(1-2), 136–146. https://doi.org/10.1016/S0921-5093(00)00954-0
  • Patil, M., Choudhury, D., Ranjith, P., & Zhao, J. (2015). Seismic analysis of tunnels in soft soils: A state-of-the-art review. Proceedings of the International Conference on Soft Ground Engineering (ICSGE 2015) (pp. 625–634).
  • Patil, M., Choudhury, D., Ranjith, P. G., & Zhao, J. (2018). Behaviour of shallow tunnel in soft soil under seismic conditions. Tunnelling and Underground Space Technology, 82, 30–38. https://doi.org/10.1016/j.tust.2018.04.040
  • Potts, D. M. (1999). Finite element analysis in geotechnical engineering: Volume one – Theory. Thomas Telford Publishing.
  • Raj, A., Sathyan, D., & Mini, K. M. (2019). Physical and functional characteristics of foam concrete: A review. Construction and Building Materials, 221, 787–799. https://doi.org/10.1016/j.conbuildmat.2019.06.052
  • Rajak, D. K., Kumaraswamidhas, L. A., & Das, S. (2017). Technical overview of aluminium alloy foam. Reviews on Advanced Materials Science, 49(1), 68–86.
  • Reyes, A., Hopperstad, O. S., Berstad, T., Hanssen, A. G., & Langseth, M. (2003). Constitutive modelling of aluminium foam including fracture and statistical variation of density. European Journal of Mechanics - A/Solids, 22(6), 815–835. https://doi.org/10.1016/j.euromechsol.2003.08.001
  • Seed, H. B., Wong, R. T., Idriss, I. M., & Tokimatsu, K. (1986). Moduli and damping factors for dynamic analyses of cohesionless soils. Journal of Geotechnical Engineering, 112(11), 1016–1032. https://doi.org/10.1061/(ASCE)0733-9410(1986)112:11(1016)
  • Shen, J. H., Lu, G. X., & Ruan, D. (2010). Compressive behaviour of closed-cell aluminium foams at high strain rates. Composites Part B: Engineering, 41(8), 678–685. https://doi.org/10.1016/j.compositesb.2010.07.005
  • Su, L. J., Liu, H. Q., Yao, G. C., & Zhang, J. L. (2019). Experimental study on the closed-cell aluminium foam shock absorption layer of a high-speed railway tunnel. Soil Dynamics and Earthquake Engineering, 119, 331–345. https://doi.org/10.1016/j.soildyn.2019.01.012
  • Tanaydin, S. (1998). Robust design and analysis for quality engineering. Taylor & Francis.
  • Tsinidis, G., Pitilakis, K., & Anagnostopoulos, C. (2016). Circular tunnels in sand: Dynamic response and efficiency of seismic analysis methods at extreme lining flexibilities. Bulletin of Earthquake Engineering, 14(10), 2903–2929. https://doi.org/10.1007/s10518-016-9928-1
  • Tsinidis, G., Rovithis, E., Pitilakis, K., & Chazelas, J. L. (2016). Seismic response of box-type tunnels in soft soil: Experimental and numerical investigation. Tunnelling and Underground Space Technology, 59, 199–214. https://doi.org/10.1016/j.tust.2016.07.008
  • Wang, W. L., Wang, T. T., Su, J. J., Lin, C. H., Seng, C. R., & Huang, T. H. (2001). Assessment of damage in mountain tunnels due to the Taiwan Chi-Chi earthquake. Tunnelling and Underground Space Technology, 16(3), 133–150. https://doi.org/10.1016/S0886-7798(01)00047-5
  • Wang, Z. Z., Jiang, Y. J., & Zhu, C. A. (2019). Seismic energy response and damage evolution of tunnel lining structures. European Journal of Environmental and Civil Engineering, 23(6), 758–770. https://doi.org/10.1080/19648189.2017.1304283
  • Wang, Z. Z., & Zhang, Z. (2013). Seismic damage classification and risk assessment of mountain tunnels with a validation for the 2008 Wenchuan earthquake. Soil Dynamics and Earthquake Engineering, 45, 45–55. https://doi.org/10.1016/j.soildyn.2012.11.002
  • Xin, C. L., Wang, Z. Z., & Yu, J. (2020). The evaluation on shock absorption performance of buffer layer around the cross section of tunnel lining. Soil Dynamics and Earthquake Engineering, 131, 106032. https://doi.org/10.1016/j.soildyn.2020.106032
  • Xin, C. L., Wang, Z. Z., Zhou, J. M., & Gao, B. (2019). Shaking table tests on seismic behaviour of polypropylene fiber reinforced concrete tunnel lining. Tunnelling and Underground Space Technology, 88, 1–15. https://doi.org/10.1016/j.tust.2019.02.019
  • Xu, H., Li, T. B., Xia, L., Zhao, J. X., & Wang, D. (2016). Shaking table tests on seismic measures of a model mountain tunnel. Tunnelling and Underground Space Technology, 60, 197–209. https://doi.org/10.1016/j.tust.2016.09.004
  • Yang, L., Wang, G., Liu, Q., & Lei, G. (2006). A study on the dynamic properties of soft soil in Shanghai [Paper presentation]. Soil and Rock Behaviour and Modelling (pp. 466–473). https://doi.org/10.1061/40862(194)62
  • Yu, M.-H. (2006). Generalized plasticity. Springer Science & Business Media.
  • Zarnani, S., & Bathurst, R. J. (2007). Experimental investigation of EPS geofoam seismic buffers using shaking table tests. Geosynthetics International, 14(3), 165–177. https://doi.org/10.1680/gein.2007.14.3.165
  • Zhang, X. P., Jiang, Y. J., & Sugimoto, S. (2018). Seismic damage assessment of mountain tunnel: A case study on the Tawarayama tunnel due to the 2016 Kumamoto Earthquake. Tunnelling and Underground Space Technology, 71, 138–148. https://doi.org/10.1016/j.tust.2017.07.019
  • Zhao, W. S., Chen, W. Z., Tan, X. J., & Huang, S. (2013). Study on foamed concrete used as seismic isolation material for tunnels in rock. Materials Research Innovations, 17(7), 465–472. https://doi.org/10.1179/1433075X13Y.0000000110
  • Zhou, H., Wang, X. H., He, C. D., & Huang, C. X. (2018). Seismic response of a tunnel embedded in compacted clay through large-scale shake table testing. Shock and Vibration, 2018, 1–17. https://doi.org/10.1155/2018/5968431
  • Zlatanović, E., Lukić, D. Č., Prolović, V., Bonić, Z., & Davidović, N. (2015). Comparative study on earthquake-induced soil–tunnel structure interaction effects under good and poor soil conditions. European Journal of Environmental and Civil Engineering, 19(8), 1000–1014. https://doi.org/10.1080/19648189.2014.992548

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.