280
Views
1
CrossRef citations to date
0
Altmetric
Original Articles

Effects of long-term leakage of shield lining on tunnelling-induced ground consolidation movements

, , , , , & show all
Pages 8018-8048 | Received 06 Sep 2021, Accepted 07 Dec 2021, Published online: 17 Dec 2021

References

  • Arjnoi, P., Jeong, J. H., Kim, C. Y., & Park, K. H. (2009). Effect of drainage conditions on porewater pressure distributions and lining stresses in drained tunnels. Tunnelling and Underground Space Technology, 24(4), 376–389. https://doi.org/10.1016/j.tust.2008.10.006
  • Bobet, A. (2001). Analytical solutions for shallow tunnels in saturated ground. Journal of Engineering Mechanics, 127(12), 1258–1266. https://doi.org/10.1061/(ASCE)0733-9399(2001)127:12(1258)
  • Cao, Y., Jiang, J., Xie, K. H., & Huang, W. M. (2014). Analytical solutions for nonlinear consolidation of soft soil around a shield tunnel with idealized sealing linings. Computers and Geotechnics, 61(9), 144–152. 2014.05.014 https://doi.org/10.1016/j.compgeo
  • Carranza-Torres, C., & Zhao, J. (2009). Analytical and numerical study of the effect of water pressure on the mechanical response of cylindrical lined tunnels in elastic and elasto-plastic porous media. International Journal of Rock Mechanics and Mining Sciences, 46(3), 531–547. https://doi.org/10.1016/j.ijrmms.2008.09.009
  • Cattoni, E., Miriano, C., Boco, L., & Tamagnini, C. (2016). Time-dependent ground movements induced by shield tunneling in soft clay: A parametric study. Acta Geotechnica, 11(6), 1385–1315. https://doi.org/10.1007/s11440-016-0452-x
  • Chen, R. P., Zhang, P., Wu, H. N., Wang, Z. T., & Zhong, Z. Q. (2019). Prediction of shield tunneling-induced ground settlement using machine learning techniques. Frontiers of Structural and Civil Engineering, 13(6), 1363–1378. https://doi.org/10.1007/s11709-019-0561-3
  • Chen, Z. J., Feng, W., & Yin, J. H. (2021). A new simplified method for calculating short-term and long-term consolidation settlements of multi-layered soils considering creep limit. Computers and Geotechnics, 138(2021), 104324. https://doi.org/10.1016/j.compgeo.2021.104324
  • Chou, W. I., & Bobet, A. (2002). Prediction of ground deformations in shallow tunnels in clay. Tunnelling and Underground Space Technology, 17(1), 3–19. https://doi.org/10.1016/S0886-7798(01)00068-2
  • Clough, G. W., & Schmidt, B. (1981). Design and performance of excavations and tunnels in soft clay. Developments in Geotechnical Engineering, 20(1), 569–634. https://doi.org/10.1016/b978-0-444-41784-8.50011-3
  • Cording, E. J. (1991). Control of ground movements around tunnels in soil. In Proceedings of the 9th Pan-American Conference on Soil Mechanics and Foundation Engineering, Guadalajara, Mexico, 2195–2244.
  • Davis, E. H., & Raymond, G. P. (1965). A non-linear theory of consolidation. Géotechnique, 15(2), 161–173. https://doi.org/10.1680/geot.1965.15.2.161
  • Duncan, J. M. (1993). Limitation of conventional analysis of consolidation settlement. Journal of Geotechnical Engineering, 119(9), 1333–1359. https://doi.org/10.1016/0148-9062(94)90622-x
  • Fang, Q., Liu, X., Zhang, D. L., & Lou, H. C. (2017). Shallow tunnel construction with irregular surface topography using cross diaphragm method. Tunnelling and Underground Space Technology, 68(9), 11–21. https://doi.org/10.1016/j.tust.2017.05.015
  • Feng, W. Q., & Yin, J. H. (2017). A new simplified Hypothesis B method for calculating consolidation settlements of double soil layers exhibiting creep. International Journal for Numerical and Analytical Methods in Geomechanics, 41(6), 899–917. https://doi.org/10.1002/nag.2635
  • Hajiazizi, M., & Bastan, P. (2014). The elastoplastic analysis of a tunnel using the EFG method: A comparison of the EFGM with FEM and FDM. Applied Mathematics and Computation, 234(2), 82–113. https://doi.org/10.1016/j.amc.2014.02.024
  • Jallow, A., Ou, C. Y., & Lim, A. (2019). Three-dimensional numerical study of long-term settlement induced in shield tunneling. Tunnelling and Underground Space Technology, 88(6), 221–236. https://doi.org/10.1016/j.tust.2019.02.021
  • Jiang, X. L., Zhao, Z. M., & Li, Y. (2004). Analysis and calculation of surface and subsurface settlement trough profiles due to tunneling. Rock and Soil Mechanics, 25(10), 1542–1544. https://doi.org/10.1007/BF02911033
  • Klar, A. (2018). Elastic continuum solution for tunneling effects on buried pipelines using Fourier expansion. Journal of Geotechnical and Geoenvironmental Engineering, 144(9), 04018062. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001945
  • Kong, F. C., Lu, D. C., Du, X. L., & Shen, C. P. (2019). Elastic analytical solution of shallow tunnel owing to twin tunnelling based on a unified displacement function. Applied Mathematical Modelling, 68(4), 422–442. https://doi.org/10.1016/j.apm.2018.11.038
  • Laver, R. G., Li, Z. L., & Soga, K. (2017). Method to evaluate the long-term surface movements by tunneling in London clay. Journal of Geotechnical and Geoenvironmental Engineering, 143(3), 06016023. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001611
  • Lee, K. M., Ji, H. W., Shen, C. K., Liu, J. H., & Bai, T. H. (1999). Ground response to the construction of Shanghai Metro Tunnel-Line 2. Soils and Foundations, 39(3), 113–134. https://doi.org/10.3208/sandf.39.3_113
  • Li, X. (1999). Stress and displacement fields around a deep circular tunnel with partial sealing. Computers and Geotechnics, 24(2), 125–140. https://doi.org/10.1016/S0266-352X(98)00035-4
  • Liang, R. Z. (2019). Simplified analytical method for evaluating the effects of overcrossing tunnelling on existing shield tunnels using the nonlinear Pasternak foundation model. Soils and Foundations, 59(6), 1711–1727. https://doi.org/10.1016/j.sandf.2019.07.009
  • Liang, R. Z., Wu, W. B., Yu, F., Jiang, G. S., & Liu, J. W. (2018). Simplified method for evaluating tunnels deformation due to adjacent excavation. Tunnelling and Underground Space Technology, 71(1), 94–105. https://doi.org/10.1016/j.tust.2017.08.010
  • Liu, X., Fang, Q., Zhang, D. L., & Liu, Y. (2020). Energy-based prediction of volume loss ratio and plastic zone dimension of shallow tunnelling. Computers and Geotechnics, 118(2), 103343. https://doi.org/10.1016/j.compgeo.2019.103343
  • Loganathan, N., & Poulos, H. G. (1998). Analytical prediction for tunneling-induced ground movements in clays. Journal of Geotechnical and Geoenvironmental Engineering, 124(9), 846–856. https://doi.org/10.1061/(ASCE)1090-0241(1998)124:9(846)
  • Loganathan, N., Poulos, H. G., & Stewart, D. P. (2000). Centrifuge model testing of tunneling-induced ground and pile deformations. Géotechnique, 50(3), 283–294. https://doi.org/10.1680/geot.2000.50.3.283
  • Lu, D. C., Lin, Q. T., Tian, Y., Du, X. L., & Gong, Q. M. (2020). Formula for predicting ground settlement induced by tunnelling based on Gaussian function. Tunnelling and Underground Space Technology, 103(9), 103443. https://doi.org/10.1016/j.tust.2020.103443
  • Lü, X., Su, Z., Huang, M., & Zhou, Y. (2020). Strength reduction finite element analysis of a stability of large cross-river shield tunnel face with seepage. European Journal of Environmental and Civil Engineering, 24(3), 336–353. https://doi.org/10.1080/19648189.2017.1383942
  • Ma, S. K., Shao, Y., Liu, Y., Jiang, J., & Fan, X. L. (2017). Responses of pipeline to side-by-side twin tunnelling at different depth: 3D centrifuge tests and numerical modelling. Tunnelling and Underground Space Technology, 66(6), 157–173. https://doi.org/10.1016/j.tust.2017.04.006
  • Mair, R. J., Taylor, R. N., & Bracegirdle, A. (1993). Subsurface settlement profiles above tunnels in clay. Géotechnique, 43(2), 315–320. https://doi.org/10.1680/geot.1995.45.2.361
  • Marshall, A. M., Farrell, R., Klar, A., & Mair, R. (2012). Tunnels in sands: The effect of size, depth and volume loss on greenfield displacements. Géotechnique, 62(5), 385–399. https://doi.org/10.1680/geot.10.P.047
  • Milad, Z., & Masoud, R. (2021). Ground reaction curve of a circular tunnel considering the effects of the altered zone and the self-weight of the plastic zones. European Journal of Environmental and Civil Engineering, 1, 1–24. https://doi.org/10.1080/19648189.2021.1877829
  • Mo, P. Q., & Yu, H. S. (2017). Undrained cavity-contraction analysis for prediction of soil behavior around tunnels. International Journal of Geomechanics, 17(5), 04016121. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000816
  • Mu, B. G., Xie, X. K., Li, X., Li, J. C., Shao, C. M., & Zhao, J. (2021). Monitoring, modelling and prediction of segmental lining deformation and ground settlement of an EPB tunnel in different soils. Tunnelling and Underground Space Technology, 113 (7), 103870. https://doi.org/10.1016/j.tust.2021.103870
  • Ng, C. W. W., Liu, G. B., & Li, Q. (2013). Investigation of the long-term tunnel settlement mechanisms of the first metro line in Shanghai. Canadian Geotechnical Journal, 50(6), 674–684. https://doi.org/10.1139/cgj-2012-0298
  • Nyren, R. J. (1998). Field measurements above twin tunnels in London clay [doctoral thesis]. University of London.
  • O’Reilly, M. P., & New, B. M. (1982). Settlements above tunnels in the United Kingdom-their magnitude and prediction. In Proceeding of Tunnelling’82 Symposium, 173–181. Institution of Mining & Metallurgy.
  • Ou, C. Y., Chin, C. K., & Liu, C. C. (2009). Development of time dependent stress-strain simulation of clay. Journal of Mechanics, 25 (1), 27–40. https://doi.org/10.1017/S1727719100003579
  • Palmer, J. H. L., & Belshaw, D. J. (1980). Deformations and pore pressures in the vicinity of a precast, segmented, concrete-lined tunnel in clay. Canadian Geotechnical Journal, 17(2), 174–184. https://doi.org/10.1139/t80-021
  • Pan, Y. T., Yao, K., Phoon, K. K., & Lee, F. H. (2019). Analysis of tunnelling through spatially-variable improved surrounding–A simplified approach. Tunnelling and Underground Space Technology, 93(11), 103102. https://doi.org/10.1016/j.tust.2019.103102
  • Peck, R. B. (1969). Deep excavations and tunnelling in soft ground. In 7th International Conference on Soil Mechanics and Foundation Engineering, 225–290. https://www.issmge.org/uploads/publications/1/38/1969_04_0004.pdf
  • Shen, S. L., Wu, H. N., Cui, Y. J., & Yin, Z. Y. (2014). Long-term settlement behaviour of metro tunnels in the soft deposits of Shanghai. Tunnelling and Underground Space Technology, 40(2), 309–323. https://doi.org/10.1016/j.tust.2013.10.013
  • Shi, J. K., Wang, F., Zhang, D. M., & Huang, H. W. (2021). Refined 3D modelling of spatial-temporal distribution of excess pore water pressure induced by large diameter slurry shield tunneling. Computers and Geotechnics, 137(9), 104312. https://doi.org/10.1016/j.compgeo.2021.104312
  • Shi, J. W., Ding, C., Ng, C. W. W., Lu, H., & Chen, L. (2020). Effects of overconsolidation ratio on tunnel responses due to overlying basement excavation in clay. Tunnelling and Underground Space Technology, 97(3), 103247. https://doi.org/10.1016/j.tust.2019.103247
  • Shi, J. W., Wang, Y., & Ng, C. W. W. (2016). Three-dimensional centrifuge modeling of ground and pipeline response to tunnel excavation. Journal of Geotechnical and Geoenvironmental Engineering, 142(11), 04016054. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001529
  • Shibata, T., Shuku, T., Murakami, A., Nishimura, S., Fujisawa, K., Hasegawa, N., & Nonami, S. (2019). Prediction of long-term settlement and evaluation of pore water pressure using particle filter. Soils and Foundations, 59(1), 67–83. https://doi.org/10.1016/j.sandf.2018.09.006
  • Shin, H. S., Youn, D. J., Chae, S. E., & Shin, J. H. (2009). Effective control of pore water pressures on tunnel linings using pin-hole drain method. Tunnelling and Underground Space Technology, 24(5), 555–561. https://doi.org/10.1016/j.tust.2009.02.006
  • Shin, J. H., Addenbrooke, T. I., & Potts, D. M. (2002). Numerical study of the effect of groundwater movement on long-term tunnel behaviour. Géotechnique, 52(6), 391–403. https://doi.org/10.1680/geot.2002.52.6.391
  • Shin, J. H., Kim, S. H., & Shin, Y. S. (2012). Long-term mechanical and hydraulic interaction and leakage evaluation of segmented tunnels. Soils and Foundations, 52(1), 38–48. https://doi.org/10.1016/j.sandf.2012.01.011
  • Shirlaw, J. N. (1995). Observed and calculated pore pressure and deformations induced by an earth balance shield: Discussion. Canadian Geotechnical Journal, 32(1), 181–189. https://doi.org/10.1139/t95-017
  • Terzaghi, K. (1944). Theoretical soil mechanics. Chapman and Hall.
  • Tornborg, J., Karlsson, M., Kullingsjö, A., & Karstunen, M. (2021). Modelling the construction and long-term response of Gӧta Tunnel. Computers and Geotechnics, 134(6), 104027. https://doi.org/10.1016/j.compgeo.2021.104027
  • Verruijt, A. (1997). Complex variable solution for a deforming circular tunnel in an elastic half-plane. International Journal for Numerical and Analytical Methods in Geomechanics, 21(2), 77–89. https://doi.org/10.1002/(sici)1096-9853(199702)21:2 < 77::aid-nag857 > 3.0.co;2-m
  • Verruijt, A., & Booker, J. R. (1996). Surface settlements due to deformation of a tunnel in an elastic half plane. Géotechnique, 46(4), 753–756. https://doi.org/10.1680/geot.1998.48.5.709
  • Wei, G. (2008). Research on theoretical calculation of long-term ground settlement caused by shield tunneling. Chinese Journal of Rock Mechanics and Engineering, 27(1), 2960–2966.
  • Wongsaroj, J., Soga, K., & Mair, R. J. (2013). Tunnelling-induced consolidation settlements in London clay. Géotechnique, 63(13), 1103–1115. https://doi.org/10.1680/geot.12.P.126
  • Ye, F., Qin, N., Han, X., Liang, X., Gao, X., & Ying, K. (2020). Displacement infiltration diffusion model of power-law grout as backfill grouting of a shield tunnel. European Journal of Environmental and Civil Engineering, 3, 1–14. https://doi.org/10.1080/19648189.2020.1735524
  • Zhang, D. M., Huang, Z. K., Wang, R. L., Yan, J. Y., & Zhang, J. (2018). Grouting-based treatment of tunnel settlement: Practice in Shanghai. Tunnelling and Underground Space Technology, 80(10), 181–196. https://doi.org/10.1016/j.tust.2018.06.017
  • Zhang, D. M., Huang, Z. K., Yin, Z. Y., Ran, L. Z., & Huang, H. W. (2017). Predicting the grouting effect on leakage-induced tunnels and ground response in saturated soils. Tunnelling and Underground Space Technology, 65(5), 76–90. https://doi.org/10.1016/j.tust.2017.02.005
  • Zhang, D. M., Ma, L. X., Huang, H. W., & Zhang, J. (2012). Predicting leakage-induced settlement of shield tunnels in saturated clay. Computer Modeling in Engineering & Sciences, 89(3), 163–188. https://doi.org/10.1016/j.petrol.2012.08.014
  • Zhang, D. M., Ma, L. X., Zhang, J., Hicher, P. Y., & Juang, C. H. (2015). Ground and tunnel responses induced by partial leakage in saturated clay with anisotropic permeability. Engineering Geology, 189(4), 104–115. https://doi.org/10.1016/j.enggeo.2015.02.005
  • Zhang, W. G., Li, H. R., Wu, C. Z., Li, Y. Q., Liu, Z. Q., & Liu, H. L. (2021). Soft computing approach for prediction of surface settlement induced by earth pressure balance shield tunneling. Underground Space., 6(4), 353–363. https://doi.org/10.1016/j.undsp.2019.12.003
  • Zhang, Z. G., Huang, M. S., Zhang, C. P., Jiang, K. M., & Bai, Q. M. (2020). Analytical prediction of tunneling-induced ground movements and liner deformation in saturated soils considering influences of shield air pressure. Applied Mathematical Modelling, 78(2), 749–772. https://doi.org/10.1016/j.apm.2019.10.025
  • Zhu, C. H., & Li, N. (2017). Prediction and analysis of surface settlement due to shield tunneling for Xi’an Metro. Canadian Geotechnical Journal, 54(4), 529–546. https://doi.org/10.1139/cgj-2016-0166

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.