266
Views
0
CrossRef citations to date
0
Altmetric
Original Articles

Analyzing the effectiveness of anti-slide piles for slope stabilization against seismic loading using discrete element method

ORCID Icon
Pages 8133-8151 | Received 04 Sep 2021, Accepted 13 Dec 2021, Published online: 22 Dec 2021

References

  • Al-Defae, A. H., & Knappett, J. A. (2014). Centrifuge modeling of the seismic performance of pile-reinforced slopes. Journal of Geotechnical and Geoenvironmental Engineering, 140(6), 04014014. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001105
  • Ausilio, E., Conte, E., & Dente, G. (2001). Stability analysis of slopes reinforced with piles. Computers and Geotechnics, 28(8), 591–611. https://doi.org/10.1016/S0266-352X(01)00013-1
  • Bosscher, P. J., & Gray, D. H. (1986). Soil arching in sandy slopes. Journal of Geotechnical Engineering, 112(6), 626–645. https://doi.org/10.1061/(ASCE)0733-9410(1986)112:6(626)
  • Chen, W., Min, S., Chala, A. T., Zhang, Y., & Liu, X. (2020). Performance of geosynthetic-reinforced pile-supported embankment on soft marine deposit. In Proceedings of the Institution of Civil Engineers - Geotechnical Engineering (pp. 1–18). https://doi.org/10.1680/jgeen.19.00303
  • Chuhan, Z., Pekau, O. A., Feng, J., & Guanglun, W. (1997). Application of distinct element method in dynamic analysis of high rock slopes and blocky structures. Soil Dynamics and Earthquake Engineering, 16(6), 385–394. https://doi.org/10.1016/S0267-7261(97)00012-2
  • Cundall, P. A., & Strack, O. D. (1979). A discrete numerical model for granular assemblies. Géotechnique, 29(1), 47–65. https://doi.org/10.1680/geot.1979.29.1.47
  • El Shamy, U., & Sizkow, S. F. (2021a). Coupled smoothed particle hydrodynamics-discrete element method simulations of soil liquefaction and its mitigation using gravel drains. Soil Dynamics and Earthquake Engineering, 140, 106460. https://doi.org/10.1016/j.soildyn.2020.106460
  • El Shamy, U., & Sizkow, S. F. (2021b). Coupled SPH-DEM simulations of liquefaction-induced flow failure. Soil Dynamics and Earthquake Engineering, 144, 106683. https://doi.org/10.1016/j.soildyn.2021.106683
  • Ellis, E. A., Durrani, I. K., & Reddish, D. J. (2010). Numerical modelling of discrete pile rows for slope stability and generic guidance for design. Géotechnique, 60(3), 185–195. https://doi.org/10.1680/geot.7.00090
  • Han, J., Bhandari, A., & Wang, F. (2012). DEM analysis of stresses and deformations of geogrid-reinforced embankments over piles. International Journal of Geomechanics, 12(4), 340–350. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000050
  • Hassan, S., & El Shamy, U. (2019). DEM simulations of the seismic response of granular slopes. Computers and Geotechnics, 112, 230–244. https://doi.org/10.1016/j.compgeo.2019.04.019
  • He, J., Li, X., Li, S., Yin, Y., & Qian, H. (2010). Study of seismic response of colluvium accumulation slope by particle flow code. Granular Matter., 12(5), 483–490. https://doi.org/10.1007/s10035-010-0213-8
  • Ho, I. H. (2015). Numerical study of slope-stabilizing piles in undrained clayey slopes with a weak thin layer. International Journal of Geomechanics, 15(5), 06014025. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000445
  • Huang, Y., Xu, X., Liu, J., & Mao, W. (2020). Centrifuge modeling of seismic response and failure mode of a slope reinforced by a pile-anchor structure. Soil Dynamics and Earthquake Engineering, 131, 106037. https://doi.org/10.1016/j.soildyn.2020.106037
  • Indraratna, B., Ngo, N. T., Rujikiatkamjorn, C., & Sloan, S. W. (2015). Coupled discrete element–finite difference method for analysing the load-deformation behaviour of a single stone column in soft soil. Computers and Geotechnics, 63, 267–278. https://doi.org/10.1016/j.compgeo.2014.10.002
  • Itasca, C. (2014). PFC (particle flow code in 2 and 3 dimensions), version 5.0 [User’s manual]. Numer. Anal. Methods Geomech, 32(6), 189–213.
  • Kanagasabai, S., Smethurst, J. A., & Powrie, W. (2011). Three-dimensional numerical modelling of discrete piles used to stabilize landslides. Canadian Geotechnical Journal, 48(9), 1393–1411. https://doi.org/10.1139/t11-046
  • Kuhn, M. R., Renken, H. E., Mixsell, A. D., & Kramer, S. L. (2014). Investigation of cyclic liquefaction with discrete element simulations. Journal of Geotechnical and Geoenvironmental Engineering, 140(12), 04014075. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001181
  • Li, X., He, S., & Wu, Y. (2010). Seismic displacement of slopes reinforced with piles. Journal of Geotechnical and Geoenvironmental Engineering, 136(6), 880–884. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000296
  • Liang, T., Knappett, J. A., & Duckett, N. (2015). Modelling the seismic performance of rooted slopes from individual root–soil interaction to global slope behaviour. Géotechnique, 65(12), 995–1009. https://doi.org/10.1680/jgeot.14.P.207
  • Liu, X., Zhou, A., Shen, S. L., Li, J., & Arulrajah, A. (2021). Modelling unsaturated soil-structure interfacial behavior by using DEM. Computers and Geotechnics, 137, 104305. https://doi.org/10.1016/j.compgeo.2021.104305
  • Liu, Z., & Koyi, H. A. (2013). Kinematics and internal deformation of granular slopes: Insights from discrete element modeling. Landslides, 10(2), 139–160. https://doi.org/10.1007/s10346-012-0318-8
  • Lopes, F. R., Freire, T. C., Campos, T. D., & Wa and Gomes Rm, L. (2021). Pile contribution to slope stability: Application to open quays. In Proceedings of the Institution of Civil Engineers-Geotechnical Engineering (pp. 1–15).
  • Macaro, G., Utili, S., & Martin, C. M. (2020). DEM simulations of transverse pipe–soil interaction on sand. Géotechnique, 71(3), 1–204. https://doi.org/10.1680/jgeot.18.P.133
  • Madabhushi, S. P. G., & Zeng, X. (2007). Simulating seismic response of cantilever retaining walls. Journal of Geotechnical and Geoenvironmental Engineering, 133(5), 539–549. https://doi.org/10.1061/(ASCE)1090-0241(2007)133:5(539)
  • Nian, T. K., Jiang, J. C., Wang, F. W., Yang, Q., & Luan, M. T. (2016). Seismic stability analysis of slope reinforced with a row of piles. Soil Dynamics and Earthquake Engineering, 84, 83–93. https://doi.org/10.1016/j.soildyn.2016.01.023
  • Scholtès, L. U. C., & Donzé, F. V. (2012). Modelling progressive failure in fractured rock masses using a 3D discrete element method. International Journal of Rock Mechanics and Mining Sciences, 52, 18–30. https://doi.org/10.1016/j.ijrmms.2012.02.009
  • Sizkow, S. F., & El Shamy, U. (2021a). Discrete-element method simulations of the seismic response of flexible retaining walls. Journal of Geotechnical and Geoenvironmental Engineering, 147(2), 04020157. https://doi.org/10.1061/(ASCE)GT.1943-5606.0002428
  • Sizkow, S. F., & El Shamy, U. (2021b). SPH-DEM simulations of saturated granular soils liquefaction incorporating particles of irregular shape. Computers and Geotechnics, 134, 104060. https://doi.org/10.1016/j.compgeo.2021.104060
  • Wang, J., & Zhao, B. (2014). Discrete-continuum analysis of monotonic pile penetration in crushable sands. Canadian Geotechnical Journal, 51(10), 1095–1110. https://doi.org/10.1139/cgj-2013-0263
  • Wang, P., Karatza, Z., & Arson, C. (2019). DEM modelling of sequential fragmentation of zeolite granules under oedometric compression based on XCT observations. Powder Technology, 347, 66–75. https://doi.org/10.1016/j.powtec.2019.02.050
  • Wang, R., Fu, P., Zhang, J. M., & Dafalias, Y. F. (2019). Fabric characteristics and processes influencing the liquefaction and re-liquefaction of sand. Soil Dynamics and Earthquake Engineering, 125, 105720. https://doi.org/10.1016/j.soildyn.2019.105720
  • Won, J., You, K., Jeong, S., & Kim, S. (2005). Coupled effects in stability analysis of pile–slope systems. Computers and Geotechnics, 32(4), 304–315. https://doi.org/10.1016/j.compgeo.2005.02.006
  • Xiao, S. (2021). Improved limit analysis method of piled slopes considering the pile axial forces. Proceedings of the Institution of Civil Engineers - Geotechnical Engineering, 174(1), 75–82. https://doi.org/10.1680/jgeen.19.00241
  • Yin, Z. Y., Wang, P., & Zhang, F. (2020). Effect of particle shape on the progressive failure of shield tunnel face in granular soils by coupled FDM-DEM method. Tunnelling and Underground Space Technology, 100, 103394. https://doi.org/10.1016/j.tust.2020.103394
  • Zhang, C., Jiang, G., Su, L., Lei, D., Liu, W., & Wang, Z. (2020). Large-scale shaking table model test on seismic performance of bridge-pile-foundation slope with anti-sliding piles: A case study. Bulletin of Engineering Geology and the Environment, 79(3), 1429–1447. https://doi.org/10.1007/s10064-019-01614-y
  • Zhu, M., Gong, G., Xia, J., Liu, L., & Wilkinson, S. (2021). Effects of deviator strain histories on liquefaction of loose sand using DEM. Computers and Geotechnics, 136, 104213. https://doi.org/10.1016/j.compgeo.2021.104213
  • Zhuang, Y., Cui, X., Dai, G., & X and Li S, G. (2020). An analytical method for a pile-stabilised slope considering soil anisotropy. In Proceedings of the Institution of Civil Engineers-Geotechnical Engineering (pp. 1–11).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.