180
Views
0
CrossRef citations to date
0
Altmetric
Original Articles

Behavior of saturated micaceous silty sand subjected to a combination of static and cyclic load using simple shear tests

&
Pages 8168-8193 | Received 17 Jan 2021, Accepted 16 Dec 2021, Published online: 28 Dec 2021

References

  • Adamidis, O., & Madabhushi, S. P. G. (2018). Experimental investigation of drainage during earthquake-induced liquefaction. Géotechnique, 68(8), 655–665. https://doi.org/10.1680/jgeot.16.P.090
  • Alarcón-Guzmán, A., Chameau, J. L., Leonards, G. A., & Frost, J. D. (1989). Shear modulus and cyclic undrained behavior of sands. Soils and Foundations, 29(4), 105–119. https://doi.org/10.3208/sandf1972.29.4_105
  • Bjerrum, L., & Landva, A. (1966). Direct simple-shear test on a Norwegian quick clay. Géotechnique, 16(1), 1–20. https://doi.org/10.1680/geot.1966.16.1.1
  • Boulanger, R., & Idriss, I. M. (2006). Liquefaction susceptibility criteria for silts and clays. Journal of Geotechnical and Geoenvironmental Engineering, 132(11), 1413–1426. https://doi.org/10.1061/(ASCE)1090-0241(2006)132:11(1413)
  • Casagrande, A. (1976). Liquefaction and cyclic mobility of sand: A critical review. Harvard University.
  • Chang, N. Y., & Ko, H. Y. (1982). Effect of grain size distribution on dynamic properties and liquefaction potential of granular soils. Research Report R82-103. University of Colorado at Denver.
  • Chen, G., Wu, Q., Sun, T., Zhao, K., Zhou, E., Xu, L., & Zhou, Y. (2018). Cyclic behaviors of saturated sand-gravel mixtures under undrained cyclic triaxial loading. Journal of Earthquake Engineering, 22(1), 1–34. https://doi.org/10.1080/13632469.2015.1104756
  • Chen, G., Zhou, Z., Sun, T., Wu, Q., Xu, L., Khoshnevisan, S., & Ling, D. (2017). Shear modulus and damping ratio of sand–gravel mixtures over a wide strain range. Journal of Earthquake Engineering, 23(8), 1407–1440.
  • Darby, K. M., Boulanger, R. W., & DeJong, J. T. (2019). Effect of partial drainage on cyclic strengths of saturated sands in dynamic centrifuge tests. Journal of Geotechnical and Geoenvironmental Engineering, 145(11), 04019089. https://doi.org/10.1061/(ASCE)GT.1943-5606.0002085
  • Dobry, R., & Ladd, R. S. (1980). Discussion to “Soil liquefaction and cyclic mobility evaluation for level ground during earthquakes,” by H.B. Seed and “Liquefaction potential: Science versus practice,” by R.B. Peck. Journal of the Geotechnical Engineering Division, 106(6), 720–724. https://doi.org/10.1061/AJGEB6.0000984
  • Dobry, R., Ladd, R. S., Yokel, F. Y., Chung, R. M., & Powell, D. (1982). Prediction of water pore pressure buildup and liquefaction of sand during earthquakes by the cyclic strain method. NBS Building Science Series 138, National Bureau of Standards.
  • Drnevich, V. P., Hall, J. R., & Richart, F. E. (1966). Large amplitude vibration effects on the shear modulus of sand. Report to Waterways Experiment Station. University of Michigan.
  • Drnevich, V. P., Hall, J. R., & Richart, F. E. (1967). Effect of amplitude of vibration on the shear modulus of sand. International Symposium on Wave Propagation and Dynamic Properties of Earth Materials, Albuquerque, NM.
  • Drnevich, V. P., Hardin, B. O., & Shippy, D. J. (1978). Modulus and damping of soils by the resonant-column method. In M. L. Silver & D. Tiedemann (Eds.), Dynamic geotechnical testing (91–125). ASTM International.
  • Franke, K. W., Rollins, K. M., Ledezma, C., Hedengren, J. D., Wolfe, D., Ruggles, S., Bender, C., & Reimschiissel, B. (2017). Reconnaissance of two liquefaction sites using small unmanned aerial vehicles and structure from motion computer vision following the April 1, 2014 Chile earthquake. Journal of Geotechnical and Geoenvironmental Engineering, 143(5), 04016125. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001647
  • Georgiannou, V. N., & Konstadinou, M. (2014). Effects of density on cyclic behavior of anisotropically consolidated Ottawa sand under undrained torsional loading. Géotechnique, 64(4), 287–302. https://doi.org/10.1680/geot.13.P.090
  • Hardin, B. O. (1970). Suggested methods of test for shear modulus and damping of soils by the resonant column. In Special procedures for testing soil and rock for engineering purposes (5th ed., 516–529). ASTM International.
  • Hardin, B. O., & Drnevich, V. P. (1972). Shear modulus and damping in soils: Design equations and curves. Journal of the Soil Mechanics and Foundations Division, 98(7), 667–692. https://doi.org/10.1061/JSFEAQ.0001760
  • Hyodo, M., Tanimizu, H., Yasufuku, N., & Murata, H. (1994). Undrained cyclic and monotonic triaxial behavior of saturated loose sand. Soils and Foundations, 34(1), 19–32. https://doi.org/10.3208/sandf1972.34.19
  • Ishihara, K. (1993). Liquefaction and flow failure during earthquake. Géotechnique, 43(3), 351–415. https://doi.org/10.1680/geot.1993.43.3.351
  • Iwasaki, T., Tatsuoka, F., & Takagi, Y. (1978). Shear moduli of sands under cyclic torsional shear loading. Soils and Foundations, 18(1), 39–56. https://doi.org/10.3208/sandf1972.18.39
  • Kramer, S. L. (1989). Uncertainty in steady state liquefaction evaluation procedures. Journal of the Soil Mechanics and Foundations Division, 115(10), 1402–1419.
  • Lo Presti, D. C. F., Jamiolkowski, M., Pallara, O., Cavallaro, A., & Pedroni, S. (1997). Shear modulus and damping of soils. Géotechnique, 47(3), 603–617. https://doi.org/10.1680/geot.1997.47.3.603
  • Marsal, R. (1961). Behavior of a sandy uniform soil during the Jaltipan earthquake, México. Proceedings of the Fifth International Conference on Soil Mechanics and Foundation Engineering, Paris, July 17-22 (Vol. 1, 224–233). Online Library of the International Society for Soil Mechanics and Geotechnical Engineering (ISSMGE). https://www.issmge.org/publications/online-library
  • Martínez, E., Patiño, H., & Galindo, R. (2017). Evaluation of the risk of sudden failure of a cohesive soil subjected to cyclic loading. Soil Dynamics and Earthquake Engineering, 92, 419–432. https://doi.org/10.1016/j.soildyn.2016.10.017
  • Moss, R. E. S., Baise, L. G., Zhu, J., & Kadkha, D. (2017). Examining the discrepancy between forecast and observed liquefaction from the 2015 Gorkha, Nepal, earthquakes. Earthquake Spectra, 33(1_suppl), 73–83. https://doi.org/10.1193/120316eqs220m
  • Pan, K., Zhou, G. Y., Yang, Z. X., & Cai, Y. Q. (2020). Comparison of cyclic liquefaction behavior of clean and silty sands considering static shear effect. Soil Dynamics and Earthquake Engineering, 139, 106338. https://doi.org/10.1016/j.soildyn.2020.106338
  • Park, T., & Silver, M. L. (1975). Dynamic soil properties required to predict the dynamic behavior of elevated structures. Report DOT-TST-75-44, U.S. Department of Transportation.
  • Patiño, H., Martínez, E., & Galindo, R. (2020). Dynamic behavior of a granular medium subjected to resonant column tests: Application to ottawa sand. Geotechnical Testing Journal, 43(1), 20170322–20170150. https://doi.org/10.1520/GTJ20170322
  • Patiño, H., Martínez, E., González, J., & Soriano, A. (2017). Shear modulus of a saturated granular soil derivate from resonant column test. Acta Geotechnica Slovenica, 2017(2), 33–45.
  • Polito, C. P., & Sibley, E. L. D. (2020). Threshold fines content and behavior of sands with nonplastic silts. Canadian Geotechnical Journal, 57(3), 462–465. https://doi.org/10.1139/cgj-2018-0698
  • Puertos del Estado. (2021). Web page of the Public State Ports Entity, Government of Spain. http://www.puertos.es/es-es/oceanografia/Paginas/portus.aspx
  • Pyke, R. M. (1973). Settlement and liquefaction of sand under multi-directional loading [Ph.D. dissertation]. University of California.
  • Rahimi, S., Wood, C. M., Wotherspoon, L. M., & Green, R. A. (2020). Efficacy of aging correction for liquefaction assessment of case histories recorded during the 2010 Darfield and 2011 Christchurch earthquakes in New Zealand. Journal of Geotechnical and Geoenvironmental Engineering, 146(8), 04020059. https://doi.org/10.1061/(ASCE)GT.1943-5606.0002294
  • Ross, G. A., Seed, H. B., & Migliaccio, R. R. (1969). Bridge foundation behavior in Alaska earthquake. Journal of the Soil Mechanics and Foundations Division, 95(4), 1007–1036. https://doi.org/10.1061/JSFEAQ.0001302
  • Seed, H. B. (1976). Some aspects of sand liquefaction under cyclic loading. Proceedings, Conference on Behavior of Offshore Structures, Norwegian Institute of Technology, Oslo, Norway, pp. 379–391.
  • Seed, H. B. (1986). Design problems in soil liquefaction. Journal of the Soil Mechanics and Foundations Division, 113(8), 827–845.
  • Seed, H. B., & Idriss, I. M. (1967). An analysis of the soil liquefaction in the Niigata earthquake. Journal of the Soil Mechanics and Foundations Division, 93(3), 83–108. https://doi.org/10.1061/JSFEAQ.0000981
  • Seed, H. B., & Lee, K. L. (1966). Liquefaction of saturated sand during cyclic loading. Journal of the Soil Mechanics and Foundations Division, 92(6), 105–134. https://doi.org/10.1061/JSFEAQ.0000913
  • Silver, M. L., & Seed, B. H. (1969). The behaviour of sands under seismic loading conditions. Earthquake Engineering Center. Report No. EERC 69-16. Univ. of California.
  • Sivathayalan, S., & Ha, D. (2011). Effect of static shear stress on the cyclic resistance of sands in simple shear loading. Canadian Geotechnical Journal, 48(10), 1471–1484. https://doi.org/10.1139/t11-056
  • Sun, M., & Biscontin, G. (2019). The development of shear strain in undrained multi-directional simple shear tests. Earthquake Geotechnical Engineering for Protection and Development of Environment and Constructions. Proceedings of the 7th International Conference on Earthquake Geotechnical Engineering. CRC Press, pp. 5136–5142.
  • Toyota, H., & Takada, S. (2019). Effects of gravel content on liquefaction resistance and its assessment considering deformation characteristics in gravel – mixed sand. Canadian Geotechnical Journal, 56(12), 1743–1755. https://doi.org/10.1139/cgj-2018-0575
  • Villacreses, J. P., Caicedo, B., Caro, S., & Yépez, F. (2020). A novel procedure to determine shear dynamic modulus and damping ratio for partial saturated compacted fine-grained soils. Soil Dynamics and Earthquake Engineering, 131, 106029. https://doi.org/10.1016/j.soildyn.2019.106029
  • Wang, C., & Chen, Q. (2018). A hybrid geotechnical and geological data-based framework for multiscale regional liquefaction hazard mapping. Géotechnique, 68(7), 614–625.
  • Wei, X., & Yang, J. (2019). Cyclic behavior and liquefaction resistance of silty sands with presence of initial static shear stress. Soil Dynamics and Earthquake Engineering, 122, 274–289. https://doi.org/10.1016/j.soildyn.2018.11.029
  • Wichtmann, T., & Triantafyllidis, T. (2009). Influence of the grain-size distribution curve of quartz sand on the small strain shear modulus Gmax. Journal of Geotechnical and Geoenvironmental Engineering, 135(10), 1404–1418. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000096
  • Wichtmann, T., & Triantafyllidis, T. (2014). Stiffness and damping of clean quartz sand with various grain-size distribution curves. Journal of Geotechnical and Geoenvironmental Engineering, 140(3), 06013003. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000977
  • Yang, J., & Gu, X. Q. (2013). Shear stiffness of granular material at small strains: Does it depend on grain size? Géotechnique, 63(2), 165–179. https://doi.org/10.1680/geot.11.P.083
  • Youd, T. L. (1970). Densification and shear of sand during vibration. Journal of the Soil Mechanics and Foundations Division, 96(3), 863–880. https://doi.org/10.1061/JSFEAQ.0001423
  • Youd, T. L., Idriss, I. M., Andrus, R. D., Arango, I., Castro, G., Christian, J. T., Dobry, R., Finn, W. D. L., Harder, L. F., Hynes, M. E., Ishihara, K., Koester, J. P., Liao, S. S. C., Marcuson, W. F., Martin, G. R., Mitchell, J. K., Moriwaki, Y., Power, M. S., Robertson, P. K., Seed, R. B., & Stokoe, K. H. (2001). Liquefaction resistance of soils; Summary report from the 1996 NCEER and 1998 NCEER/NSF workshops on evaluation of liquefaction resistance of soils. Journal of Geotechnical and Geoenvironmental Engineering, 127(10), 817–833. https://doi.org/10.1061/(ASCE)1090-0241(2001)127:10(817)

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.