224
Views
1
CrossRef citations to date
0
Altmetric
Original Articles

Self-healing concrete: application of monod’s approach for modeling Bacillus pseudofirmus growth curves

ORCID Icon, , , &
Pages 8229-8241 | Received 15 Jul 2021, Accepted 17 Dec 2021, Published online: 10 Jan 2022

References

  • Ahn, T.-H., & Kishi, T. (2010). Crack self-healing behavior of cementitious composites incorporating various mineral admixtures. Journal of Advanced Concrete Technology, 8(2), 171–186. https://doi.org/10.3151/jact.8.171
  • Alazhari, M., Sharma, T., Heath, A., Cooper, R., & Paine, K. (2018). Application of expanded perlite encapsulated bacteria and growth media for self-healing concrete. Construction and Building Materials, 160, 610–619. https://doi.org/10.1016/j.conbuildmat.2017.11.086
  • Arnaldos, M., Amerlinck, Y., Rehman, U., Maere, T., Hoey, S. V., Naessens, W., & Nopens, I. (2015). From the affinity constant to the half-saturation index: Understanding conventional modeling concepts in novel wastewater treatment processes. Water Research, 70, 458–470. https://doi.org/10.1016/j.watres.2014.11.046
  • Baranyi, J., & Roberts, T. A. (1994). A dynamic approach to predicting bacterial growth in food. International Journal of Food Microbiology, 23(3–4), 277–294. https://doi.org/10.1016/0168-1605(94)90157-0
  • Chen, H., Qian, C., & Huang, H. (2016). Self-healing cementitious materials based on bacteria and nutrients immobilized respectively. Construction and Building Materials, 126, 297–303. https://doi.org/10.1016/j.conbuildmat.2016.09.023
  • Chen, J., & Ye, G. (2019). A lattice boltzmann single component model for simulation of the autogenous self-healing caused by further hydration in cementitious material at mesoscale. Cement and Concrete Research, 123, 105782. https://doi.org/10.1016/j.cemconres.2019.105782
  • Chitez, A. S., & Jefferson, A. D. (2016). A coupled thermo-hygro-chemical model for characterising autogenous healing in ordinary cementitious materials. Cement and Concrete Research, 88, 184–197. https://doi.org/10.1016/j.cemconres.2016.07.002
  • Davey, K. (1994). Review of predictive microbiology—Theory and application, by t. a. McMeekin, j. n. olley, t. ross and d. a. ratkowsky. Food Microbiology, 11(1), 85–86. https://doi.org/10.1006/fmic.1994.1011
  • de Jong, H., Casagranda, S., Giordano, N., Cinquemani, E., Ropers, D., Geiselmann, J., & Gouzé, J.-L. (2017). Mathematical modelling of microbes: Metabolism, gene expression and growth. Journal of the Royal Society Interface, 14(136), 20170502. https://doi.org/10.1098/rsif.2017.0502
  • Dhami, N. K., Reddy, M. S., & Mukherjee, A. (2013). Biomineralization of calcium carbonates and their engineered applications: A review. Frontiers in Microbiology, 4, 314. https://doi.org/10.3389/fmicb00314
  • Egli, T. (2009). Growth kinetics, bacterial. In Encyclopedia of microbiology (pp. 180–193). Elsevier. https://doi.org/10.1016/b978-012373944-5.00260-1
  • Ehrlich, H. (2015). Geomicrobial processes: Geomicrobial processes overview. In H. L. Ehrlich, D. K. Newman, & A. Kappler (Eds.), Ehrlich’s geomicrobiology (6th ed., pp. 129–155). CRC Press. https://doi.org/10.1201/b19121-8
  • Erşan, Y. Ç., Gruyaert, E., Louis, G., Lors, C., Belie, N. D., & Boon, N. (2015). Self-protected nitrate reducing culture for intrinsic repair of concrete cracks. Frontiers in Microbiology, 6, 1228. https://doi.org/10.3389/fmicb01228
  • Ersan, Y., Wang, J., Boon, N., & Belie, N. D. (2014). Ureolysis and denitrification based microbial strategies for self-healing concrete. In M. Grantham, P. A. Muhammed Basheer, B. Magee, & M. Soutsos (Eds.), Concrete solutions (pp. 59–64). CRC Press. https://doi.org/10.1201/b17394-10
  • Fujikawa, H., Kai, A., & Morozumi, S. (2004). Improvement of new logistic model for bacterial growth. Shokuhin Eiseigaku Zasshi. Journal of the Food Hygienic Society of Japan, 45(5), 250–254. https://doi.org/10.3358/shokueishi.45.250
  • Glasser, F. P., Marchand, J., & Samson, E. (2008). Durability of concrete – degradation phenomena involving detrimental chemical reactions. Cement and Concrete Research, 38(2), 226–246. https://doi.org/10.1016/j.cemconres.2007.09.015
  • Harris, D. K., Civitillo, J. M., & Gheitasi, A. (2016). Performance and behavior of hybrid composite beam bridge in virginia: Live load testing. Journal of Bridge Engineering, 21(6), 04016022. https://doi.org/10.1061/(ASCE)BE.1943-5592.0000820
  • He, J., & Shi, X. (2017). Developing an abiotic capsule-based self-healing system for cementitious materials: The state of knowledge. Construction and Building Materials, 156, 1096–1113. https://doi.org/10.1016/j.conbuildmat.2017.09.041
  • Hicks, D. B., Jereen, A., Fackelmayer, O. J., LaFountain, A. M., Frank, H. A., & Krulwich, T. A. (2019). Mutational loss of carotenoids in alkaliphilic bacillus pseudofirmus OF4 results in sensitivity to oxidative stress and growth at high pH. Microbiology (Reading, England), 165(9), 1001–1012. https://doi.org/10.1099/mic.0.000828
  • Huang, H., & Ye, G. (2012). Simulation of self-healing by further hydration in cementitious materials. Cement and Concrete Composites, 34(4), 460–467. https://doi.org/10.1016/j.cemconcomp.2012.01.003
  • Issa, C. A. (2009). Methods of crack repair in concrete structures. In N. Delatte (Ed.), Failure, distress and repair of concrete structures (pp. 169–193). Elsevier. https://doi.org/10.1533/9781845697037.2.169
  • Jonkers, H. (2019). Bacteria-based self-healing concrete: Towards standardization. Research & Development in Material Science, 10(2). https://doi.org/10.31031/rdms.2019.10.000732.
  • Jonkers, H. M., Thijssen, A., Muyzer, G., Copuroglu, O., & Schlangen, E. (2010). Application of bacteria as self-healing agent for the development of sustainable concrete. Ecological Engineering, 36(2), 230–235. https://doi.org/10.1016/j.ecoleng.2008.12.036
  • Kovárová-Kovar, K., & Egli, T. (1998). Growth kinetics of suspended microbial cells: From single-substrate-controlled growth to mixed-substrate kinetics. Microbiology and Molecular Biology Reviews : MMBR, 62(3), 646–666. https://doi.org/10.1128/mmbr.62.3.646-666.1998
  • Lobry, J. R., Flandrois, J. P., Carret, G., & Pave, A. (1992). Monod's bacterial growth model revisited. Bulletin of Mathematical Biology, 54(1), 117–122. https://doi.org/10.1007/bf02458623
  • Luo, M., & Qian, C. (2016). Influences of bacteria-based self-healing agents on cementitious materials hydration kinetics and compressive strength. Construction and Building Materials, 121, 659–663. https://doi.org/10.1016/j.conbuildmat.2016.06.075
  • Luzio, G. D., Ferrara, L., & Krelani, V. (2018). Numerical modeling of mechanical regain due to self-healing in cement based composites. Cement and Concrete Composites, 86, 190–205. https://doi.org/10.1016/j.cemconcomp.2017.11.006
  • Lv, Z., & Chen, H. (2012). Modeling of self-healing efficiency for cracks due to unhydrated cement nuclei in hardened cement paste. Procedia Engineering, 27, 281–290. https://doi.org/10.1016/j.proeng.2011.12.454
  • Mahasenan, N., Smith, S., & Humphreys, K. (2003). The cement industry and global climate ChangeCurrent and potential future cement industry CO2 emissions [Paper presentation]. Greenhouse Gas Control Technologies – 6th International Conference (pp. 995–1000). Elsevier. https://doi.org/10.1016/b978-008044276-1/50157-4
  • Maier, R. M. (2009). Bacterial growth. In Environmental microbiology (pp. 37–54). Elsevier. https://doi.org/10.1016/b978-0-12-370519-8.00003-1
  • Mankad, T., & Bungay, H. (1988). Model for microbial growth with more than one limiting nutrient. Journal of Biotechnology, 7(2), 161–166. https://doi.org/10.1016/0168-1656(88)90062-4
  • Mauludin, L. M., & Oucif, C. (2020). Computational modeling of fracture in concrete: A review. Frontiers of Structural and Civil Engineering, 14(3), 586–598. https://doi.org/10.1007/s11709-020-0573-z
  • Mauludin, L. M., Oucif, C., & Rabczuk, T. (2020). The effects of mismatch fracture properties in encapsulation-based self-healing concrete using cohesive-zone model. Frontiers of Structural and Civil Engineering, 14(3), 792–801. https://doi.org/10.1007/s11709-020-0629-0
  • McMeekin, T., Olley, J., Ratkowsky, D., Corkrey, R., & Ross, T. (2013). Predictive microbiology theory and application: Is it all about rates? Food Control, 29(2), 290–299. https://doi.org/10.1016/j.foodcont.2012.06.001
  • Mondal, S., & Ghosh, A. D. (2019). Review on microbial induced calcite precipitation mechanisms leading to bacterial selection for microbial concrete. Construction and Building Materials, 225, 67–75. https://doi.org/10.1016/j.conbuildmat.2019.07.122
  • Monod, J. (1978). The growth of bacterial cultures. In A. Lwoff & A. Ullmann (Eds.), Selected papers in molecular biology by Jacques Monod (pp. 139–162). Elsevier. https://doi.org/10.1016/b978-0-12-460482-7.50020-8
  • Neville, A. M. (1996). Properties of concrete (4th ed.). Longman.
  • Nežerka, V., Bílý, P., Hrbek, V., & Fládr, J. (2019). Impact of silica fume, fly ash, and metakaolin on the thickness and strength of the ITZ in concrete. Cement and Concrete Composites, 103, 252–262. https://doi.org/10.1016/j.cemconcomp.2019.05.012
  • Nežerka, V., Hrbek, V., Prošek, Z., Somr, M., Tesárek, P., & Fládr, J. (2018). Micromechanical characterization and modeling of cement pastes containing waste marble powder. Journal of Cleaner Production, 195, 1081–1090. https://doi.org/10.1016/j.jclepro.2018.05.284
  • Nežerka, V., Zeman, J., & Němeček, J. (2017). Micromechanics-based simulations of compressive and tensile testing on lime-based mortars. Mechanics of Materials, 105, 49–60. https://doi.org/10.1016/j.mechmat.2016.11.011
  • Panik, M. J. (2014). Growth curve modeling. Wiley. https://doi.org/10.1002/9781118763971
  • Paris, J. M., Roessler, J. G., Ferraro, C. C., DeFord, H. D., & Townsend, T. G. (2016). A review of waste products utilized as supplements to portland cement in concrete. Journal of Cleaner Production, 121, 1–18. https://doi.org/10.1016/j.jclepro.2016.02.013
  • Pichler, B., & Hellmich, C. (2011). Upscaling quasi-brittle strength of cement paste and mortar: A multi-scale engineering mechanics model. Cement and Concrete Research, 41(5), 467–476. https://doi.org/10.1016/j.cemconres.2011.01.010
  • Pla, M.-L., Oltra, S., Esteban, M.-D., Andreu, S., & Palop, A. (2015). Comparison of primary models to predict microbial growth by the plate count and absorbance methods. BioMed Research International, 2015, 365025. https://doi.org/10.1155/2015/365025
  • Ramachandran, S. K., Ramakrishnan, V., & Bang, S. S. (2001). Remediation of concrete using microorganisms. ACI Materials Journal, 98, 3–9. https://doi.org/10.14359/10154
  • Schreiberová, H., Bílý, P., Fládr, J., Šeps, K., Chylík, R., & Trtík, T. (2019). Impact of the self-healing agent composition on material characteristics of bio-based self-healing concrete. Case Studies in Construction Materials, 11, e00250. https://doi.org/10.1016/j.cscm.2019.e00250
  • Stanescu, D., & Chen-Charpentier, B. M. (2009). Random coefficient differential equation models for bacterial growth. Mathematical and Computer Modelling, 50(5-6), 885–895. https://doi.org/10.1016/j.mcm.2009.05.017
  • Stocks-Fischer, S., Galinat, J. K., & Bang, S. S. (1999). Microbiological precipitation of CaCO3. Soil Biology and Biochemistry, 31(11), 1563–1571. https://doi.org/10.1016/S0038-0717(99)00082-6
  • Strigul, N., Dette, H., & Melas, V. B. (2009). A practical guide for optimal designs of experiments in the monod model. Environmental Modelling & Software, 24(9), 1019–1026. https://doi.org/10.1016/j.envsoft.2009.02.006
  • Tashiro, T., & Yoshimura, F. (2019). A neo-logistic model for the growth of bacteria. Physica A: Statistical Mechanics and Its Applications, 525, 199–215. https://doi.org/10.1016/j.physa.2019.03.049
  • Teleken, J. T., da Silva Robazza, W., & de Almeida Gomes, G. (2011). Mathematical modeling of microbial growth in milk. Food Science and Technology (Campinas), 31(4), 891–896. https://doi.org/10.1590/S0101-20612011000400010
  • Teleken, J. T., Galvão, A. C., & da Silva Robazza, W. (2018). Use of modified richards model to predict isothermal and non-isothermal microbial growth. Brazilian Journal of Microbiology : [Publication of the Brazilian Society for Microbiology], 49(3), 614–620. https://doi.org/10.1016/j.bjm.2018.01.005
  • Tziviloglou, E., Pan, Z., Jonkers, H. M., & Schlangen, E. (2017). Bio-based self-healing mortar: An experimental and numerical study. Journal of Advanced Concrete Technology, 15(9), 536–543. https://doi.org/10.3151/jact.15.536
  • Tziviloglou, E., Wiktor, V., Jonkers, H., & Schlangen, E. (2016). Bacteria-based self-healing concrete to increase liquid tightness of cracks. Construction and Building Materials, 122, 118–125. https://doi.org/10.1016/j.conbuildmat.2016.06.080
  • van der Zwaag, S. (2007). An introduction to material design principles: Damage prevention versus damage management. In S. van der Zwaag (Ed.), Self healing materials (pp. 1–18). Springer. https://doi.org/10.1007/978-1-4020-6250-6_1
  • Vivekanandan, B., & Rao, A. S. (2017). Estimation of yield, growth rate, decay rate, and half-saturation coefficients of ASM1 model parameters. International Journal of Environmental Research, 11(4), 415–423. https://doi.org/10.1007/s41742-017-0037-z
  • Wang, J. Y., Belie, N. D., & Verstraete, W. (2012). Diatomaceous earth as a protective vehicle for bacteria applied for self-healing concrete. Journal of Industrial Microbiology & Biotechnology, 39(4), 567–577. https://doi.org/10.1007/s10295-011-1037-1
  • Wang, J., Ersan, Y. C., Boon, N., & Belie, N. D. (2016). Application of microorganisms in concrete: A promising sustainable strategy to improve concrete durability. Applied Microbiology and Biotechnology, 100(7), 2993–3007. https://doi.org/10.1007/s00253-016-7370-6
  • Wang, J., Snoeck, D., Vlierberghe, S. V., Verstraete, W., & Belie, N. D. (2014a). Application of hydrogel encapsulated carbonate precipitating bacteria for approaching a realistic self-healing in concrete. Construction and Building Materials, 68, 110–119. https://doi.org/10.1016/j.conbuildmat.2014.06.018
  • Wang, J., Soens, H., Verstraete, W., & Belie, N. D. (2014b). Self-healing concrete by use of microencapsulated bacterial spores. Cement and Concrete Research, 56, 139–152. https://doi.org/10.1016/j.cemconres.2013.11.009
  • Wiktor, V., & Jonkers, H. M. (2011). Quantification of crack-healing in novel bacteria-based self-healing concrete. Cement and Concrete Composites, 33(7), 763–770. https://doi.org/10.1016/j.cemconcomp.2011.03.012
  • Xue, C., Li, W., Li, J., Tam, V. W. Y., & Ye, G. (2019). A review study on encapsulation-based self-healing for cementitious materials. Structural Concrete, 20(1), 198–212. https://doi.org/10.1002/suco.201800177
  • Yang, H., & Jiang, P. (2010). Self-cleaning diffractive macroporous films by doctor blade coating. Langmuir : The ACS Journal of Surfaces and Colloids, 26(15), 12598–12604. https://doi.org/10.1021/la1021643
  • Zemskov, S. V., Jonkers, H. M., & Vermolen, F. J. (2014). A mathematical model for bacterial self-healing of cracks in concrete. Journal of Intelligent Material Systems and Structures, 25(1), 4–12. https://doi.org/10.1177/1045389X12437887
  • Zhang, W., Zheng, Q., Ashour, A., & Han, B. (2020). Self-healing cement concrete composites for resilient infrastructures: A review. Composites Part B: Engineering, 189, 107892. https://doi.org/10.1016/j.compositesb.2020.107892
  • Zhang, Y., Guo, H., & Cheng, X. (2015). Role of calcium sources in the strength and microstructure of microbial mortar. Construction and Building Materials, 77, 160–167. https://doi.org/10.1016/j.conbuildmat.2014.12.040
  • Zhou, S., Jia, Y., & Wang, C. (2020). Global sensitivity analysis for the polymeric microcapsules in self-healing cementitious composites. Polymers, 12(12), 2990. https://doi.org/10.3390/polym12122990
  • Zhou, S., Zhu, H., Ju, J. W., Yan, Z., & Chen, Q. (2017). Modeling microcapsule-enabled self-healing cementitious composite materials using discrete element method. International Journal of Damage Mechanics, 26(2), 340–357. https://doi.org/10.1177/1056789516688835
  • Zhou, S., Zhu, H., Yan, Z., Ju, J. W., & Zhang, L. (2016). A micromechanical study of the breakage mechanism of microcapsules in concrete using PFC2d. Construction and Building Materials, 115, 452–463. https://doi.org/10.1016/j.conbuildmat.2016.04.067
  • Zhu, H., Chen, Q., Yan, Z., Ju, J. W., & Zhou, S. (2014). Micromechanical models for saturated concrete repaired by the electrochemical deposition method. Materials and Structures, 47(6), 1067–1082. https://doi.org/10.1617/s11527-013-0115-4
  • Zhu, J. (2017). Development of general gompertz models and their simplified two-parameter forms based on specific microbial growth rate for microbial growth, bio-products and substrate consumption. Advances in Biotechnology & Microbiology, 4(3). https://doi.org/10.19080/aibm.2017.04.555640
  • Zhuang, X., & Zhou, S. (2019). The prediction of self-healing capacity of bacteria-based concrete using machine learning approaches. Computers, Materials & Continua, 59(1), 57–77. https://doi.org/10.32604/cmc.2019.04589
  • Zhuang, X., Nguyen-Xuan, H., & Zhou, S. (2021). The interaction between microcapsules with different sizes and propagating cracks. Computers, Materials & Continua, 67(1), 577–593. https://doi.org/10.32604/cmc.2021.014688
  • Zwietering, M. H., Rombouts, F. M., & van't Riet, K. (1992). Comparison of definitions of the lag phase and the exponential phase in bacterial growth. The Journal of Applied Bacteriology, 72(2), 139–145. https://doi.org/10.1111/j.1365-2672.1992.tb01815.x

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.