414
Views
1
CrossRef citations to date
0
Altmetric
Original Articles

3D DEM investigation of the resistance of ice and frozen granular soils

&
Pages 8242-8262 | Received 24 Aug 2021, Accepted 17 Dec 2021, Published online: 29 Dec 2021

References

  • Andersland, O. B., & Ladanyi, B. (2013). An introduction to frozen ground engineering. Springer Science & Business Media.
  • Arenson, L. U. (2003). Unstable alpine permafrost: A potentially important natural hazard-variations of geotechnical behaviour with time and temperature. vdf Hochschulverlag AG.
  • Arenson, L. U. (2004). Numerically modeling the strength of ice using discrete elements. Numerical Modeling in Micromechanics via Particle Methods, 2004, 341–345.
  • Arenson, L. U., & Springman, S. M. (2005a). Mathematical descriptions for the behaviour of ice-rich frozen soils at temperatures close to 0 °C. Canadian Geotechnical Journal, 42(2), 431–442. https://doi.org/10.1139/t04-109
  • Arenson, L. U., & Springman, S. M. (2005b). Triaxial constant stress and constant strain rate tests on ice-rich permafrost samples. Canadian Geotechnical Journal, 42(2), 412–430. https://doi.org/10.1139/t04-111
  • Barsch, D. (1992). Permafrost creep and rockglaciers. Permafrost and Periglacial Processes, 3(3), 175–188. https://doi.org/10.1002/ppp.3430030303
  • Bishop, A. W. (1954). Correspondence on shear characteristics of a saturated silt, measured in triaxial compression. Géotechnique, 4(1), 43–45. https://doi.org/10.1680/geot.1954.4.1.43
  • Bourbonnais, J., & Ladanyi, B. (1985). The mechanical behaviour of frozen sand down to cryogenic temperatures. International symposium on ground freezing, Vol. 4, pp. 235–244.
  • Calvetti, F. (2008). Discrete modelling of granular materials and geotechnical problems. European Journal of Environmental and Civil Engineering, 12(7–8), 951–965. https://doi.org/10.1080/19648189.2008.9693055
  • Calvetti, F., Viggiani, G., & Tamagnini, C. (2003). A numerical investigation of the incremental behavior of granular soils. Revista Italiana di Geotechnica, 37, 5–23.
  • Cole, D. M. (1987). Strain-rate and grain-size effects in ice. Journal of Glaciology, 33(115), 274–280. https://doi.org/10.3189/S0022143000008844
  • Gabrieli, F., Cola, S., & Calvetti, F. (2009). Use of an up-scaled DEM model for analysing the behaviour of a shallow foundation on a model slope. Geomechanics and Geoengineering, 4(2), 109–122. https://doi.org/10.1080/17486020902855688
  • Gagnon, R. E., & Gammon, P. H. (1995). Triaxial experiments on iceberg and glacier ice. Journal of Glaciology, 41(139), 528–540. https://doi.org/10.3189/S0022143000034869
  • Geertsema, M., Clague, J. J., Schwab, J. W., & Evans, S. G. (2006). An overview of recent large catastrophic landslides in northern British Columbia, Canada. Engineering Geology, 83(1–3), 120–143. https://doi.org/10.1016/j.enggeo.2005.06.028
  • Goughnour, R. R., & Andersland, O. B. (1968). Mechanical properties of a sand-ice system. Journal of the Soil Mechanics and Foundations Division, 94(4), 923–950. https://doi.org/10.1061/JSFEAQ.0001179
  • Harris, C. (2003). Warming permafrost in European mountains. Global and Planetary Change, 39(3–4), 215–225. https://doi.org/10.1016/j.gloplacha.2003.04.001
  • Harris, C., Arenson, L. U., Christiansen, H. H., Etzelmüller, B., Frauenfelder, R., Gruber, S., Haeberli, W., Hauck, C., Hölzle, M., Humlum, O., Isaksen, K., Kääb, A., Kern-Lütschg, M. A., Lehning, M., Matsuoka, N., Murton, J. B., Nötzli, J., Phillips, M., Ross, N., … Vonder Mühll, D. (2009). Permafrost and climate in Europe: Monitoring and modelling thermal, geomorphological and geotechnical responses. Earth-Science Reviews, 92(3–4), 117–171. https://doi.org/10.1016/j.earscirev.2008.12.002
  • Haynes, F. D., & Karalius, J. A. (1977). Effect of temperature on the strength of frozen silt [Technical report]. Cold Regions Research and Engineering Lab Hanover NH.
  • He, P., Zhu, Y., & Cheng, G. (2000). Constitutive models of frozen soil. Canadian Geotechnical Journal, 37(4), 811–816. https://doi.org/10.1139/t00-014
  • Hivon, E. G., & Sego, D. C. (1995). Strength of frozen saline soils. Canadian Geotechnical Journal, 32(2), 336–354. https://doi.org/10.1139/t95-034
  • Jia, H., Leith, K., & Krautblatter, M. (2017). Path-dependent frost-wedging experiments in fractured, low-permeability granite. Permafrost and Periglacial Processes, 28(4), 698–709. https://doi.org/10.1002/ppp.1950
  • Jones, S. J., & Chew, H. A. M. (1983). Effect of sample and grain size on the compressive strength of ice. Annals of Glaciology, 4, 129–132. https://doi.org/10.1017/S0260305500005358
  • Kääb, A., Huggel, C., Fischer, L., Guex, S., Paul, F., Roer, I., Salzmann, N., Schlaefli, S., Schmutz, K., Schneider, D., Strozzi, T., & Weidmann, Y. (2005). Remote sensing of glacier-and permafrost-related hazards in high mountains: An overview. Natural Hazards and Earth System Sciences, 5(4), 527–554. https://doi.org/10.5194/nhess-5-527-2005
  • Matsuoka, N. (2001). Microgelivation versus macrogelivation: Towards bridging the gap between laboratory and field frost weathering. Permafrost and Periglacial Processes, 12(3), 299–313. https://doi.org/10.1002/ppp.393
  • Matsuoka, N. (2008). Frost weathering and rockwall erosion in the southeastern Swiss Alps: Long-term (1994–2006) observations. Geomorphology, 99(1–4), 353–368. https://doi.org/10.1016/j.geomorph.2007.11.013
  • Nater, P., Arenson, L. U., & Springman, S. M. (2008). Choosing geotechnical parameters for slope stability assessments in alpine permafrost soils [Paper presentation]. In Ninth International Conference on Permafrost, University of Alaska Fairbanks, Vol. 29. pp. 1261–1266.
  • Rist, M. A., & Murrell, S. A. F. (1994). Ice triaxial deformation and fracture. Journal of Glaciology, 40(135), 305–318. https://doi.org/10.1017/S0022143000007395
  • Sayles, F. H., & Carbee, D. L. (1981). Strength of frozen silt as a function of ice content and dry unit weight. Engineering Geology, 18(1–4), 55–66. https://doi.org/10.1016/0013-7952(81)90046-6
  • Ting, J. M., Torrence Martin, R., & Ladd, C. C. (1983). Mechanisms of strength for frozen sand. Journal of Geotechnical Engineering, 109(10), 1286–1302. https://doi.org/10.1061/(ASCE)0733-9410(1983)109:10(1286)
  • Tuhkuri, J., & Polojärvi, A. (2018). A review of discrete element simulation of ice-structure interaction. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 376(2129), 20170335. https://doi.org/10.1098/rsta.2017.0335
  • Wang, G., & Calvetti, F. (2021). DEM modelling of ice filled rock joints. In International Conference of the International Association for Computer Methods and Advances in Geomechanics (pp. 941–948). Springer.
  • Williams, P. J., & Smith, M. W. (1991). The frozen earth [Technical report]. Cambridge University Press.
  • Xu, H. Y., Lai, Y. M., Yu, W. B., Xu, X. T., & Chang, X. X. (2011). Experimental research on triaxial strength of polycrystalline ice. Journal of Glaciology and Geocryology, 33, 1120–1126.
  • Yamamoto, Y. (2014). Instabilities in alpine permafrost: Strength and stiffness in a warming regime. vdf Hochschulverlag AG.
  • Yamamoto, Y., & Springman, S. M. (2014). Axial compression stress path tests on artificial frozen soil samples in a triaxial device at temperatures just below 0 °C. Canadian Geotechnical Journal, 51(10), 1178–1195. https://doi.org/10.1139/cgj-2013-0257

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.