204
Views
2
CrossRef citations to date
0
Altmetric
Original Articles

Development of a maturity method for GFRC shell concretes with different fiber ratios

, &
Pages 8458-8476 | Received 26 Mar 2021, Accepted 07 Jan 2022, Published online: 27 Jan 2022

References

  • Abdel-Jawad, Y. A. (2006). The maturity method: Modifications to improve estimation of concrete strength at later ages. Construction and Building Materials, 20(10), 893–900. https://doi.org/10.1016/j.conbuildmat.2005.06.022
  • Abdollahnejad, Z., Mastali, M., Mastali, M., & Dalvand, A. (2017). Comparative study on the effects of recycled glass–fiber on drying shrinkage rate and mechanical properties of the self-compacting mortar and fly ash–slag geopolymer mortar. Journal of Materials in Civil Engineering, 29(8), 04017076. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001918
  • Ahmad, S., & Umar, A. (2018). Rheological and mechanical properties of self-compacting concrete with glass and polyvinyl alcohol fibres. Journal of Building Engineering, 17, 65–74. https://doi.org/10.1016/j.jobe.2018.02.002
  • Ahmed, T. W., Ali, A. A. M., & Zidan, R. S. (2020). Properties of high strength polypropylene fiber concrete containing recycled aggregate. Construction and Building Materials, 241, 118010. https://doi.org/10.1016/j.conbuildmat.2020.118010
  • Amin, M., Tayeh, B. A., & Agwa, I. s. (2020). Investigating the mechanical and microstructure properties of fibre-reinforced lightweight concrete under elevated temperatures. Case Studies in Construction Materials, 13, e00459. https://doi.org/10.1016/j.cscm.2020.e00459
  • Amran, Y. M., Farzadnia, N., & Ali, A. A. (2015). Properties and applications of foamed concrete; a review. Construction and Building Materials, 101, 990–1005. https://doi.org/10.1016/j.conbuildmat.2015.10.112
  • ASTM A956-06 (2006). Standard test method for Leeb hardness testing of steel products. ASTM International West.
  • ASTM, D., 2732-03 (2003). Unrestrained linear thermal shrinkage of plastic film and sheeting (p. 1–5). ASTM International.
  • ASTM, S. (2004). Standard practice for estimating concrete strength by the maturity method. ASTM C, 1074 (p. 1074–1093).
  • Ates, A. O., Khoshkholghi, S., Tore, E., Marasli, M., & Ilki, A. (2019). Sprayed glass fiber–reinforced mortar with or without basalt textile reinforcement for jacketing of low-strength concrete prisms. Journal of Composites for Construction, 23(2), 04019003. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000922
  • Bassim, R., & Issa, M. (2020). Maturity-based estimates of concrete strength for Portland concrete cement pavements and patches at early age of opening to traffic. ACI Materials Journal, 117(1). https://doi.org/10.14359/51719081
  • Belkowitz, J. S. (2018). Concrete maturity.
  • Benammar, B., Mezghiche, B., & Guettala, S. (2013). Influence of atmospheric steam curing by solar energy on the compressive and flexural strength of concretes. Construction and Building Materials, 49, 511–518. https://doi.org/10.1016/j.conbuildmat.2013.08.085
  • Bergström, S. G. (1953). Curing temperature, age and strength of concrete. Magazine of Concrete Research, 5(14), 61–66. https://doi.org/10.1680/macr.1953.5.14.61
  • Boubekeur, T., Ezziane, K., & Kadri, E.-H. (2014). Estimation of mortars compressive strength at different curing temperature by the maturity method. Construction and Building Materials, 71, 299–307. https://doi.org/10.1016/j.conbuildmat.2014.08.084
  • Çakır, Ö., & Aköz, F. (2008). Effect of curing conditions on the mortars with and without GGBFS. Construction and Building Materials, 22(3), 308–314. https://doi.org/10.1016/j.conbuildmat.2006.08.013
  • Carino, N., & Nj, C. (1982). Maturity functions for concrete.
  • Dawood, E. T., & Abdullah, M. H. (2020). Behavior of non-reinforced and reinforced green mortar with fibers. Open Engineering, 11(1), 67–84.
  • Dehghanpour, H., & Yılmaz, K. (2018). Mechanical and impact behavior on recycled steel fiber reinforced cementitious mortars. Scientific Herald of the Voronezh State University of Architecture & Civil Engineering, 39(3).
  • Dehghanpour, H., & Yilmaz, K. (2020). Investigation of specimen size, geometry and temperature effects on resistivity of electrically conductive concretes. Construction and Building Materials, 250, 118864. https://doi.org/10.1016/j.conbuildmat.2020.118864
  • Dilly, R. L., & Ledbetter, W. B. (1984). Concrete strength based on maturity and pullout. Journal of Structural Engineering, 110(2), 354–369. https://doi.org/10.1061/(ASCE)0733-9445(1984)110:2(354)
  • Domagała, L., Bizoń-Żabińska, E., & Kurzyniec, K. (2019). The influence of alkali-resistant glass fibres on properties of fine-aggregate concretes [Paper presentation]. MATEC Web of Conferences, in. EDP Sciences. https://doi.org/10.1051/matecconf/201926206003
  • Du, H., & Dai Pang, S. (2020). High-performance concrete incorporating calcined kaolin clay and limestone as cement substitute. Construction and Building Materials, 264, 120152. https://doi.org/10.1016/j.conbuildmat.2020.120152
  • EN, T. (2000). 197-1: Cement—Composition, specifications and conformity criteria—Part 1: Common cements. TS EN 197, 1.
  • Frías, M. (2006). The effect of metakaolin on the reaction products and microporosity in blended cement pastes submitted to long hydration time and high curing temperature. Advances in Cement Research, 18(1), 1–6. https://doi.org/10.1680/adcr.2006.18.1.1
  • García-del-Cura, M. Á., Benavente, D., Martínez-Martínez, J., & Cueto, N. (2012). Sedimentary structures and physical properties of travertine and carbonate tufa building stone. Construction and Building Materials, 28(1), 456–467. https://doi.org/10.1016/j.conbuildmat.2011.08.042
  • Ghugal, Y. M., & Deshmukh, S. B. (2006). Performance of alkali-resistant glass fiber reinforced concrete. Journal of Reinforced Plastics and Composites, 25(6), 617–630. https://doi.org/10.1177/0731684405058273
  • Godek, E., Felekoglu, K. T., Keskinates, M., & Felekoglu, B. (2017). Development of flaw tolerant fiber reinforced cementitious composites with calcined kaolin. Applied Clay Science, 146, 423–431.
  • Gomez-Heras, M., Benavente, D., Pla, C., Martinez-Martinez, J., Fort, R., & Brotons, V. (2020). Ultrasonic pulse velocity as a way of improving uniaxial compressive strength estimations from Leeb hardness measurements. Construction and Building Materials, 261, 119996. https://doi.org/10.1016/j.conbuildmat.2020.119996
  • Güneyisi, E., Atewi, Y. R., & Hasan, M. F. (2019). Fresh and rheological properties of glass fiber reinforced self-compacting concrete with nanosilica and fly ash blended. Construction and Building Materials, 211, 349–362. https://doi.org/10.1016/j.conbuildmat.2019.03.087
  • Hansen, P. F., & Pedersen, E. J. (1977). Maturity computer for controlled curing and hardening of concrete.
  • Hong, J., Kim, R., Lee, C. H., & Choi, H. (2020). Evaluation of stiffening behavior of concrete based on contactless ultrasonic system and maturity method. Construction and Building Materials, 262, 120717. https://doi.org/10.1016/j.conbuildmat.2020.120717
  • Kamkar, S., & Eren, Ö. (2018). Evaluation of maturity method for steel fiber reinforced concrete. KSCE Journal of Civil Engineering, 22(1), 213–221. https://doi.org/10.1007/s12205-017-1761-9
  • Kazemian, A., Yuan, X., Cochran, E., & Khoshnevis, B. (2017). Cementitious materials for construction-scale 3D printing: Laboratory testing of fresh printing mixture. Construction and Building Materials, 145, 639–647. https://doi.org/10.1016/j.conbuildmat.2017.04.015
  • Kharazian, H. A., Zare, M. R., Noktehdan, M., & Sedaghatdoost, A. (2019). Effect of water-based acrylic copolymer on void systems of cementitious repair mortar. Case Studies in Construction Materials, 11, e00261. https://doi.org/10.1016/j.cscm.2019.e00261
  • Kim, T., & Rens, K. L. (2008). Concrete maturity method using variable temperature curing for normal-strength concrete mixes. II: theoretical study. Journal of Materials in Civil Engineering, 20(12), 735–741. https://doi.org/10.1061/(ASCE)0899-1561(2008)20:12(735)
  • Kizilkanat, A. B., Kabay, N., Akyüncü, V., Chowdhury, S., & Akça, A. H. (2015). Mechanical properties and fracture behavior of basalt and glass fiber reinforced concrete: An experimental study. Construction and Building Materials, 100, 218–224. https://doi.org/10.1016/j.conbuildmat.2015.10.006
  • Lachemi, M., Hossain, K., Anagnostopoulos, C., & Sabouni, A. (2007). Application of maturity method to slipforming operations: Performance validation. Cement and Concrete Composites, 29(4), 290–299. https://doi.org/10.1016/j.cemconcomp.2006.12.001
  • Liew, Y. M., Kamarudin, H., Al Bakri, A. M., Luqman, M., Nizar, I. K., Ruzaidi, C. M., & Heah, C. Y. (2012). Processing and characterization of calcined kaolin cement powder. Construction and Building Materials, 30, 794–802. https://doi.org/10.1016/j.conbuildmat.2011.12.079
  • Loukil, M., Hassine, W. B., Limam, O., & Kotronis, P. (2019). Experimental determination of GFRC tensile parameters from three-point bending tests using an analytical damage model. Construction and Building Materials, 223, 477–490. https://doi.org/10.1016/j.conbuildmat.2019.07.005
  • Martinelli, E., Koenders, E. A., & Caggiano, A. (2013). A numerical recipe for modelling hydration and heat flow in hardening concrete. Cement and Concrete Composites, 40, 48–58. https://doi.org/10.1016/j.cemconcomp.2013.04.004
  • Mermerdaş, K., Güneyisi, E., Gesoğlu, M., & Özturan, T. (2013). Experimental evaluation and modeling of drying shrinkage behavior of metakaolin and calcined kaolin blended concretes. Construction and Building Materials, 43, 337–347. https://doi.org/10.1016/j.conbuildmat.2013.02.047
  • Messan, A., Ienny, P., & Nectoux, D. (2011). Free and restrained early-age shrinkage of mortar: Influence of glass fiber, cellulose ether and EVA (ethylene-vinyl acetate). Cement and Concrete Composites, 33(3), 402–410. https://doi.org/10.1016/j.cemconcomp.2010.10.019
  • Miller, M. (2005). Polymers in cementitious materials. iSmithers Rapra Publishing.
  • Mishra, D., & Basu, A. (2013). Estimation of uniaxial compressive strength of rock materials by index tests using regression analysis and fuzzy inference system. Engineering Geology, 160, 54–68. https://doi.org/10.1016/j.enggeo.2013.04.004
  • Mo, K. H., Mohd Anor, F. A., Alengaram, U. J., Jumaat, M. Z., & Rao, K. J. (2018). Properties of metakaolin-blended oil palm shell lightweight concrete. European Journal of Environmental and Civil Engineering, 22(7), 852–868. https://doi.org/10.1080/19648189.2016.1229222
  • NEN 5970 (2001). Determination of strength of fresh concrete with the method of weighted maturity. Netherlands Standard Institute.
  • Neville, A. M. (1995). Properties of concrete. Vol. 4. Longman.
  • Nurse, R. (1949). Steam curing of concrete. Magazine of Concrete Research, 1(2), 79–88. https://doi.org/10.1680/macr.1949.1.2.79
  • Ortega, J. A., Gómez-Heras, M., Perez-López, R., & Wohl, E. (2014). Multiscale structural and lithologic controls in the development of stream potholes on granite bedrock rivers. Geomorphology, 204, 588–598. https://doi.org/10.1016/j.geomorph.2013.09.005
  • Pangdaeng, S., Sata, V., Aguiar, J., Pacheco-Torgal, F., Chindaprasirt, J., & Chindaprasirt, P. (2016). Bioactivity enhancement of calcined kaolin geopolymer with CaCl2 treatment.
  • Park, K.-B., Plawsky, J., Littman, H., & Paccione, J. (2006). Mortar properties obtained by dry premixing of cementitious materials and sand in a spout-fluid bed mixer. Cement and Concrete Research, 36(4), 728–734. https://doi.org/10.1016/j.cemconres.2005.10.012
  • Plawsky, J., Jovanovic, S., Littman, H., Hover, K., Gerolimatos, S., & Douglas, K. (2003). Exploring the effect of dry premixing of sand and cement on the mechanical properties of mortar. Cement and Concrete Research, 33(2), 255–264. https://doi.org/10.1016/S0008-8846(02)00927-4
  • Plowman, J. M., Ockleston, A. J., Mills, R. H., Gard, J. A., Klieger, P., Powers, T. C., Marshall, W. T., & McIntosh, J. D. (1956). Discussion: Maturity and the strength of concrete. Magazine of Concrete Research, 8(24), 169–183. https://doi.org/10.1680/macr.1956.8.24.169
  • Regourd, M. (1980). Comportement des ciments soumis au durcissement accéléré.
  • Richardson, I. (2004). Tobermorite/jennite-and tobermorite/calcium hydroxide-based models for the structure of CSH: applicability to hardened pastes of tricalcium silicate, β-dicalcium silicate, Portland cement, and blends of Portland cement with blast-furnace slag, metakaolin, or silica fume. Cement and Concrete Research, 34(9), 1733–1777. https://doi.org/10.1016/j.cemconres.2004.05.034
  • Rojas, M. F. (2006). Study of hydrated phases present in a MK–lime system cured at 60 C and 60 months of reaction. Cement and Concrete Research, 36(5), 827–831.
  • Said-Mansour, M., Kadri, E.-H., Kenai, S., Ghrici, M., & Bennaceur, R. (2011). Influence of calcined kaolin on mortar properties. Construction and Building Materials, 25(5), 2275–2282. https://doi.org/10.1016/j.conbuildmat.2010.11.017
  • Saul, A. (1951). Principles underlying the steam curing of concrete at atmospheric pressure. Magazine of Concrete Research, 2(6), 127–140. https://doi.org/10.1680/macr.1951.2.6.127
  • Son, S.-W., & Yeon, J. H. (2012). Mechanical properties of acrylic polymer concrete containing methacrylic acid as an additive. Construction and Building Materials, 37, 669–679. https://doi.org/10.1016/j.conbuildmat.2012.07.093
  • Song, Z., Xue, X., Li, Y., Yang, J., He, Z., Shen, S., Jiang, L., Zhang, W., Xu, L., Zhang, H., Qu, J., Ji, W., Zhang, T., Huo, L., Wang, B., Lin, X., & Zhang, N. (2016). Experimental exploration of the waterproofing mechanism of inorganic sodium silicate-based concrete sealers. Construction and Building Materials, 104, 276–283. https://doi.org/10.1016/j.conbuildmat.2015.12.069
  • Soutsos, M., Hatzitheodorou, A., Kanavaris, F., & Kwasny, J. (2017). Effect of temperature on the strength development of mortar mixes with GGBS and fly ash. Magazine of Concrete Research, 69(15), 787–801. https://doi.org/10.1680/jmacr.16.00268
  • Soutsos, M., Kanavaris, F., & Elsageer, M. (2021). Accuracy of maturity functions’ strength estimates for fly ash concretes cured at elevated temperatures. Construction and Building Materials, 266, 121043. https://doi.org/10.1016/j.conbuildmat.2020.121043
  • Soutsos, M., Turu’allo, G., Owens, K., Kwasny, J., Barnett, S., & Basheer, P. (2013). Maturity testing of lightweight self-compacting and vibrated concretes. Construction and Building Materials, 47, 118–125. https://doi.org/10.1016/j.conbuildmat.2013.04.045
  • Subasi, S. (2009). The effects of using permeable formwork on concrete maturity. Journal of the Faculty of Engineering and Architecture of Gazi University, 24(4), 725–734.
  • Sun, B., Noguchi, T., Cai, G., & Chen, Q. (2021). Prediction of early compressive strength of mortars at different curing temperature and relative humidity by a modified maturity method. Structural Concrete, 22(S1) https://doi.org/10.1002/suco.202000041
  • Tassew, S., & Lubell, A. (2014). Mechanical properties of glass fiber reinforced ceramic concrete. Construction and Building Materials, 51, 215–224. https://doi.org/10.1016/j.conbuildmat.2013.10.046
  • Tepke, D. G., Tikalsky, P. J., & Scheetz, B. E. (2004). Concrete maturity field studies for highway applications. Transportation Research Record: Journal of the Transportation Research Board, 1893(1), 26–36. https://doi.org/10.3141/1893-04
  • Topcu, I. B., & Toprak, M. U. (2005). Fine aggregate and curing temperature effect on concrete maturity. Cement and Concrete Research, 35(4), 758–762. https://doi.org/10.1016/j.cemconres.2004.04.023
  • TS EN 1170-1. (1999). Precast concrete products-test method for glass-fibre reinforced cement-part 1: measuring the consistency of the matrix "sulump test" method. TSE.
  • TS EN 1170-4. (1999). Precast concrete products-test method for glass-fibre reinforced cement-part 4: Determination of Flexural Strength. TSE Ankara Turkey.
  • TS EN 1170-6. (1999). Precast concrete products-test method for glass-fibre reinforced cement-part 6: Determination of water absorption and dry density by immersion in water TSE Ankara Turkey.
  • TS EN 196-1. (2002). Methods of testing cement-Part. TS, 1.
  • Ustabaş, İ., & Deşik, F. (2021). Transition coefficients between compressive strengths of samples with different shape and size in mass concrete and use of weight maturity method in dam construction. Structural Concrete, 22(S1). https://doi.org/10.1002/suco.201900544
  • Van Der Putten, J., Deprez, M., Cnudde, V., De Schutter, G., & Van Tittelboom, K. (2019). Microstructural characterization of 3D printed cementitious materials. Materials, 12(18), 2993. https://doi.org/10.3390/ma12182993
  • Verbeck, G. J. (1968). Structures and physical properties of cement paste [Paper presentation].5th International Congress on the Chemistry of Cement.
  • Wang, K., Shah, S. P., & Phuaksuk, P. (2001). Plastic shrinkage cracking in concrete materials—influence of fly ash and fibers. Materials Journal, 98(6), 458–464.
  • Wang, W.-C., Wang, H.-Y., Chang, K.-H., & Wang, S.-Y. (2020). Effect of high temperature on the strength and thermal conductivity of glass fiber concrete. Construction and Building Materials, 245, 118387. https://doi.org/10.1016/j.conbuildmat.2020.118387
  • Zhang, Z-h., Yao, X., Zhu, H-j., Hua, S-d., & Chen, Y. (2009). Preparation and mechanical properties of polypropylene fiber reinforced calcined kaolin-fly ash based geopolymer. Journal of Central South University of Technology, 16(1), 49–52. https://doi.org/10.1007/s11771-009-0008-4
  • Zuhua, Z., Xiao, Y., Huajun, Z., & Yue, C. (2009). Role of water in the synthesis of calcined kaolin-based geopolymer. Applied Clay Science, 43(2), 218–223. https://doi.org/10.1016/j.clay.2008.09.003

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.