115
Views
0
CrossRef citations to date
0
Altmetric
Original Articles

Preparation of alkali-activated grouts as an innovative method for utilisation of gold ore tailings

, , , & ORCID Icon
Pages 8526-8540 | Received 10 Apr 2019, Accepted 08 Jan 2022, Published online: 07 Feb 2022

References

  • Alarcon-Ruiz, L., Platret, G., Massieu, E., & Ehrlacher, A. (2005). The use of thermal analysis in assessing the effect of temperature on a cement paste. Cement and Concrete Research, 35(3), 609–613. https://doi.org/10.1016/j.cemconres.2004.06.015
  • Bernal, S. A., Mejía de Gutiérrez, R., Pedraza, A. L., Provis, J. L., Rodriguez, E. D., & Delvasto, S. (2011). Effect of binder content on the performance of alkali-activated slag concretes. Cement and Concrete Research, 41(1), 1–8. https://doi.org/10.1016/j.cemconres.2010.08.017
  • Bian, Z., Miao, X., Lei, S., Chen, S. E., Wang, W., & Struthers, S. (2012). The challenges of reusing mining and mineral-processing wastes. Science (New York, N.Y.), 337(6095), 702–703. https://doi.org/10.1126/science.1224757
  • Cheng, M.-Y., & Hoang, N.-D. (2014). Groutability estimation of grouting processes with microfine cements using an evolutionary instance-based learning approach. Journal of Computing in Civil Engineering, 28(4), 04014014. https://doi.org/10.1061/(ASCE)CP.1943-5487.0000370
  • Chun-ai, P., Dongmin, W., & Li-Ran, Z. (2017). Effect of chemical–mechanical activation on the cementitious activity of iron ore tailings [Paper presentation]. The 6th International Conference on Applied Mechanics and Civil Engineering.
  • Cristelo, N., Soares, E., Rosa, I., Miranda, T., Oliveira, D. V., Silva, R. A., & Chaves, A. (2013). Rheological properties of alkaline activated fly ash used in jet grouting applications. Construction and Building Materials, 48, 925–933. https://doi.org/10.1016/j.conbuildmat.2013.07.063
  • Fonseca, F. S., Godfrey, R. C., & Siggard, K. (2015). Compressive strength of masonry grout containing high amounts of class F fly ash and ground granulated blast furnace slag. Construction and Building Materials, 94, 719–727. https://doi.org/10.1016/j.conbuildmat.2015.07.115
  • Galindo, R., López-Delgado, A., Padilla, I., & Yates, M. (2014). Hydrotalcite-like compounds: A way to recover a hazardous waste in the aluminium tertiary industry. Applied Clay Science, 95, 41–49. https://doi.org/10.1016/j.clay.2014.03.022
  • Haha, M. B., Lothenbach, B., Le Saout, G., & Winnefeld, F. (2011). Influence of slag chemistry on the hydration of alkali-activated blast-furnace slag — Part I: Effect of MgO. Cement and Concrete Research, 41(9), 955–963. https://doi.org/10.1016/j.cemconres.2011.05.002
  • Hu, L., Wu, H., Zhang, L., Zhang, P., & Wen, Q. (2017). Geotechnical properties of mine tailings. Journal of Materials in Civil Engineering, 29(2), 04016220. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001736
  • Hudson-Edwards, K., & Dold, B. (2015). Mine waste characterization, management and remediation. Minerals, 5(1), 82–85. https://doi.org/10.3390/min5010082
  • Ishak, S. A., & Hashim, H. (2015). Low carbon measures for cement plant – A review. Journal of Cleaner Production, 103, 260–274. https://doi.org/10.1016/j.jclepro.2014.11.003
  • Jin, F., Gu, K., & Al-Tabbaa, A. (2014). Strength and drying shrinkage of reactive MgO modified alkali-activated slag paste. Construction and Building Materials, 51, 395–404. https://doi.org/10.1016/j.conbuildmat.2013.10.081
  • Kunther, W., Lothenbach, B., & Skibsted, J. (2015). Influence of the Ca/Si ratio of the C–S–H phase on the interaction with sulfate ions and its impact on the ettringite crystallization pressure. Cement and Concrete Research, 69, 37–49. https://doi.org/10.1016/j.cemconres.2014.12.002
  • Li, C., Wan, J., Sun, H., & Li, L. (2010). Investigation on the activation of coal gangue by a new compound method. Journal of Hazardous Materials, 179(1-3), 515–520. https://doi.org/10.1016/j.jhazmat.2010.03.033
  • Li, S., Sha, F., Liu, R., Li, Z., & Zhang, Q. (2017). Investigation of viscous behaviour and strength of microfine-cement-based grout mixed with microfine fly ash and superplasticiser. Advances in Cement Research, 29(5), 206–215. https://doi.org/10.1680/jadcr.16.00118
  • Li, S., Sha, F., Liu, R., Zhang, Q., & Li, Z. (2017). Investigation on fundamental properties of microfine cement and cement-slag grouts. Construction and Building Materials, 153, 965–974. https://doi.org/10.1016/j.conbuildmat.2017.05.188
  • Liu, X., Zhang, N., Yao, Y., Sun, H., & Feng, H. (2013). Micro-structural characterization of the hydration products of bauxite-calcination-method red mud-coal gangue based cementitious materials. Journal of Hazardous Materials, 262, 428–438. https://doi.org/10.1016/j.jhazmat.2013.08.078
  • Mirza, J., Saleh, K., Langevin, M.-A., Mirza, S., Bhutta, M. A. R., & Tahir, M. M. (2013). Properties of microfine cement grouts at 4 °C, 10 °C and 20 °C. Construction and Building Materials, 47, 1145–1153. https://doi.org/10.1016/j.conbuildmat.2013.05.026
  • Palardy, D., Perret, S., & Ballivy, G. (2000). Rheological behavior and setting time of microfine cement-based grouts. Aci Structural Journal, 97(4), 472–478.
  • Pantazopoulos, I. A., Markou, I. N., Christodoulou, D. N., Droudakis, A. I., Atmatzidis, D. K., Antiohos, S. K., & Chaniotakis, E. (2012). Development of microfine cement grouts by pulverizing ordinary cements. Cement and Concrete Composites, 34(5), 593–603. https://doi.org/10.1016/j.cemconcomp.2012.01.009
  • Sonebi, M., Lachemi, M., & Hossain, K. M. A. (2013). Optimisation of rheological parameters and mechanical properties of superplasticised cement grouts containing metakaolin and viscosity modifying admixture. Construction and Building Materials, 38, 126–138. https://doi.org/10.1016/j.conbuildmat.2012.07.102
  • Volli, V., & Purkait, M. K. (2016). Preparation and characterization of hydrotalcite-like materials from flyash for transesterification. Clean Technologies and Environmental Policy, 18(2), 529–540. https://doi.org/10.1007/s10098-015-1036-4
  • Wang, J., Lyu, X., Wang, L., Cao, X., Liu, Q., & Zang, H. (2018). Influence of the combination of calcium oxide and sodium carbonate on the hydration reactivity of alkali-activated slag binders. Journal of Cleaner Production, 171, 622–629. https://doi.org/10.1016/j.jclepro.2017.10.077
  • Wang, J., Lyu, X., Wang, L., Cao, X., Zang, H., & Liu, Q. (2017). Effect of anhydrite on the hydration of calcium oxide-activated ground granulated blast furnace slag binders. Science of Advanced Materials, 9(12), 2214–2222. https://doi.org/10.1166/sam.2017.3248
  • Wang, J., Wu, X-l., Wang, J-x., Liu, C-z., Lai, Y-m., Hong, Z-k., & Zheng, J-p. (2012). Hydrothermal synthesis and characterization of alkali-activated slag–fly ash–metakaolin cementitious materials. Microporous and Mesoporous Materials, 155, 186–191. https://doi.org/10.1016/j.micromeso.2012.01.016
  • Wu, P., Lyu, X., Wang, J., & Hu, S. (2017). Effect of mechanical grinding on the hydration activity of quartz in the presence of calcium hydroxide. Advances in Cement Research, 29(7), 269–277. https://doi.org/10.1680/jadcr.16.00159
  • Wu, P., Wang, J., Hu, S., Cao, X., & Lyu, X. (2018). Preparation and performance of slag-based binders for the cementation of fine tailings. Journal of Adhesion Science and Technology, 32(9), 976–996. https://doi.org/10.1080/01694243.2017.1394034
  • Yao, G., Liu, Q., Wang, J., Wu, P., & Lyu, X. (2019). Effect of mechanical grinding on pozzolanic activity and hydration properties of siliceous gold ore tailings. Journal of Cleaner Production, 217, 12–21. https://doi.org/10.1016/j.jclepro.2019.01.175
  • Zhang, G., Liu, J., Li, Y., & Liang, J. (2017). A pasty clay–cement grouting material for soft and loose ground under groundwater conditions. Advances in Cement Research, 29(2), 54–62. https://doi.org/10.1680/jadcr.16.00079
  • Zhang, N., Sun, H., Liu, X., & Zhang, J. (2009). Early-age characteristics of red mud-coal gangue cementitious material. Journal of Hazardous Materials, 167(1-3), 927–932. https://doi.org/10.1016/j.jhazmat.2009.01.086
  • Zhang, T., Gao, P., Gao, P., Wei, J., & Yu, Q. (2013). Effectiveness of novel and traditional methods to incorporate industrial wastes in cementitious materials—An overview. Resources, Conservation and Recycling, 74, 134–143. https://doi.org/10.1016/j.resconrec.2013.03.003

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.