1,063
Views
2
CrossRef citations to date
0
Altmetric
Review Article

Biochar as a cost-effective and eco-friendly substitute for binder in concrete: a review

Pages 984-1009 | Received 12 Jan 2022, Accepted 16 Apr 2022, Published online: 17 May 2022

References

  • Adhikary, S. K., Ashish, D. K., & Rudžionis, Ž. (2021). Expanded glass as light-weight aggregate in concrete – A review. Journal of Cleaner Production, 313, 127848–127864. https://doi.org/10.1016/j.jclepro.2021.127848
  • Adhikary, S. K., Rudžionis, Ž., Tučkutė, S., & Ashish, D. K. (2021). Effects of carbon nanotubes on expanded glass and silica aerogel based lightweight concrete. Scientific Reports, 11(1), 2104–2114. https://doi.org/10.1038/s41598-021-81665-y
  • Agegnehu, G., Srivastava, A., & Bird, M. I. (2017). The role of biochar and biochar-compost in improving soil quality and crop performance: A review. Applied Soil Ecology, 119, 156–170. https://doi.org/10.1016/j.apsoil.2017.06.008
  • Ahmad, M. R., Chen, B., & Duan, H. (2020). Improvement effect of pyrolyzed agro-food biochar on the properties of magnesium phosphate cement. The Science of the Total Environment, 718, 137422–137434. https://doi.org/10.1016/j.scitotenv.2020.137422
  • Akhtar, A., & Sarmah, A. K. (2018a). Novel biochar-concrete composites: Manufacturing, characterization and evaluation of the mechanical properties. Science of the Total Environment, 616–617, 408–416. https://doi.org/10.1016/j.scitotenv.2017.10.319
  • Akhtar, A., & Sarmah, A. K. (2018b). Strength improvement of recycled aggregate concrete through silicon rich char derived from organic waste. Journal of Cleaner Production, 196, 411–423. https://doi.org/10.1016/j.jclepro.2018.06.044
  • Akyıldız, A., Köse, E. T., & Yıldız, A. (2017). Compressive strength and heavy metal leaching of concrete containing medical waste incineration ash. Construction and Building Materials, 138, 326–332. https://doi.org/10.1016/j.conbuildmat.2017.02.017
  • Asadi Zeidabadi, Z., Bakhtiari, S., Abbaslou, H., & Ghanizadeh, A. R. (2018). Synthesis, characterization and evaluation of biochar from agricultural waste biomass for use in building materials. Construction and Building Materials, 181(2018), 301–308. https://doi.org/10.1016/j.conbuildmat.2018.05.271
  • Ashish, D. K. (2018). Feasibility of waste marble powder in concrete as partial substitution of cement and sand amalgam for sustainable growth. Journal of Building Engineering, 15, 236–242. https://doi.org/10.1016/j.jobe.2017.11.024
  • Ashish, D. K. (2019). Concrete made with waste marble powder and supplementary cementitious material for sustainable development. Journal of Cleaner Production, 211, 716–729. https://doi.org/10.1016/j.jclepro.2018.11.245
  • Ashish, D. K., & Verma, S. K. (2019a). Cementing efficiency of flash and rotary-calcined metakaolin in concrete. Journal of Materials in Civil Engineering, 31(12), 04019307–04019318. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002953
  • Ashish, D. K., & Verma, S. K. (2019b). Determination of optimum mixture design method for self-compacting concrete: Validation of method with experimental results. Construction and Building Materials, 217, 664–678. https://doi.org/10.1016/j.conbuildmat.2019.05.034
  • Ashish, D. K., & Verma, S. K. (2021). Robustness of self-compacting concrete containing waste foundry sand and metakaolin: A sustainable approach. Journal of Hazardous Materials, 401, 123329–123343. https://doi.org/10.1016/j.jhazmat.2020.123329
  • Barron, A. (2010). Hydration of Portland Cement OpenStax-CNX Modul. m16447. http://cnx.org/contents/Lbv3xcBF@11/Hydration-of-Portland-Cement#eip-1411
  • Berardi, U., & Iannace, G. (2015). Acoustic characterization of natural fibers for sound absorption applications. Building and Environment, 94, 840–852. https://doi.org/10.1016/j.buildenv.2015.05.029
  • Brewer, C. E. (2012). Biochar characterization and engineering [Ph.D. dissertation]. Iowa State University.
  • Campos, J., Fajilan, S., & Lualhati, J. (2020). Life cycle assessment of biochar as a partial replacement to Portland cement. IOP Conference Series: Earth and Environmental Science, 479(012025).
  • Celoglu, M. E., Yilmaz, M., & Kok, B. V. (2016). Effects of various biochars on the high temperature performance of bituminous binder. 6th Euraphalt & Eurobitume Congress. Czech Republic. European Asphalt Pavement Association (EAPA) and Eurobitume.
  • Chin, C. O., Yang, X., & Kong, S. Y. (2020). Mechanical and thermal properties of lightweight concrete incorporated with activated carbon as coarse aggregate. Journal of Building Engineering, 31, 101347–101357.
  • Cosentino, I., Restuccia, L., Ferro, G. A., & Tulliani, J.-M. (2019). Type of materials, pyrolysis conditions, carbon content and size dimensions: The parameters that influence the mechanical properties of biochar cement based composites. Theoretical and Applied Fracture Mechanics, 103, 102261–102271. https://doi.org/10.1016/j.tafmec.2019.102261
  • Cross, A., & Sohi, S. P. (2013). A method for screening the relative long-term stability of biochar. GCB Bioenergy, 5(2), 215–220. https://doi.org/10.1111/gcbb.12035
  • Cuthbertson, D. M. (2018). The production of pyrolytic biochar for addition in value-added composite material. The University of Western Ontario.
  • Cuthbertson, D., Berardi, U., Briens, C., & Berruti, F. (2019). Biochar from residual biomass as a concrete filler for improved thermal and acoustic properties. Biomass and Bioenergy, 120, 77–83. https://doi.org/10.1016/j.biombioe.2018.11.007
  • Dixit, A., Gupta, S., Pang, S. D., & Kua, H. W. (2019). Waste Valorisation using biochar for cement replacement and internal curing in ultra-high performance concrete. Journal of Cleaner Production, 238, 117876–117890. https://doi.org/10.1016/j.jclepro.2019.117876
  • Dixit, A., Verma, A., & Pang, S. D. (2021). Dual waste utilization in ultra-high performance concrete using biochar and marine clay. Cement and Concrete Composites, 120, 104049–104060. https://doi.org/10.1016/j.cemconcomp.2021.104049
  • Duku, M. H., Gu, S., & Hagan, E. B. (2011). Biochar production potential in Ghana—A review. Renewable and Sustainable Energy Reviews, 15(8), 3539–3551. https://doi.org/10.1016/j.rser.2011.05.010
  • Fabbri, D., Rombolà, A. G., Torri, C., & Spokas, K. A. (2013). Determination of polycyclic aromatic hydrocarbons in biochar and biochar amended soil. Journal of Analytical and Applied Pyrolysis, 103, 60–67. https://doi.org/10.1016/j.jaap.2012.10.003
  • Falliano, D., De Domenico, D., Quattrocchi, S., Cosenza, P., Ricciardi, G., Restuccia, L., & Ferro, G. A. (2020). Mechanical properties and carbon footprint of 3D-printable cement mortars with biochar Additions. MATEC Web of Conferences, 323, 01017. https://doi.org/10.1051/matecconf/202032301017
  • Falliano, D., De Domenico, D., Sciarrone, A., Ricciardi, G., Restuccia, L., Ferro, G., Tulliani, J.-M., & Gugliandolo, E. (2019). Influence of biochar additions on the fracture behavior of foamed concrete. Frattura ed Integrità Strutturale, 14(51), 189–198. https://doi.org/10.3221/IGF-ESIS.51.15
  • Feijoo, F., Mignone, B. K., Kheshgi, H. S., Hartin, C., McJeon, H., & Edmonds, J. (2019). Climate and carbon budget implications of linked future changes in CO2 and non-CO2 forcing. Environmental Research Letters, 14(4), 044007–044017. https://doi.org/10.1088/1748-9326/ab08a9
  • Fini, E. H., Hosseinnezhad, S., Oldham, D. J., Chailleux, E., & Gaudefroy, V. (2017). Source dependency of rheological and surface characteristics of bio-modified asphalts. Road Materials and Pavement Design, 18(2), 408–424. https://doi.org/10.1080/14680629.2016.1163281
  • Galinato, S. P., Yoder, J. K., & Granatstein, D. (2011). The economic value of biochar in crop production and carbon sequestration. Energy Policy, 39(10), 6344–6350. https://doi.org/10.1016/j.enpol.2011.07.035
  • Golla, S. Y., Kumar, K. R., & Khan, M. D. I. (2021). Structural performance of exterior beam-column joint using biochar impregnated pond ash concrete. Materials Today: Proceedings, 39, 467–471.
  • Gonzaga, M. I. S., Mackowiak, C., de Almeida, A. Q., de Carvalho Junior, J. I. T., & Andrade, K. R. (2018). Positive and negative effects of biochar from coconut husks, orange bagasse and pine wood chips on maize (Zea mays L.) growth and nutrition. CATENA, 162, 414–420. https://doi.org/10.1016/j.catena.2017.10.018
  • Guo, T., Ma, N., Pan, Y., Bedane, A. H., Xiao, H., Eić, M., & Du, Y. (2018). Characteristics of CO2 adsorption on biochar derived from biomass pyrolysis in molten salt. The Canadian Journal of Chemical Engineering, 96(11), 2352–2360. https://doi.org/10.1002/cjce.23153
  • Gupta, S., & Kashani, A. (2021). Utilization of biochar from unwashed peanut shell in cementitious building materials – Effect on early age properties and environmental benefits. Fuel Processing Technology, 218, 106841–106855. https://doi.org/10.1016/j.fuproc.2021.106841
  • Gupta, S., Krishnan, P., Kashani, A., & Kua, H. W. (2020). Application of biochar from coconut and wood waste to reduce shrinkage and improve physical properties of silica fume-cement mortar. Construction and Building Materials, 262, 120688–120702. https://doi.org/10.1016/j.conbuildmat.2020.120688
  • Gupta, S., & Kua, H. W. (2017). Factors determining the potential of biochar as a carbon capturing and sequestering construction material: Critical review. Journal of Materials in Civil Engineering, 29(9), 04017086–04017099. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001924
  • Gupta, S., & Kua, H. W. (2018). Effect of water entrainment by pre-soaked biochar particles on strength and permeability of cement mortar. Construction and Building Materials, 159, 107–125. https://doi.org/10.1016/j.conbuildmat.2017.10.095
  • Gupta, S., & Kua, H. W. (2019a). Carbonaceous micro-filler for cement: Effect of particle size and dosage of biochar on fresh and hardened properties of cement mortar. Science of the Total Environment, 662, 952–962. https://doi.org/10.1016/j.scitotenv.2019.01.269
  • Gupta, S., & Kua, H. W. (2019b). Combination of biochar and silica fume as partial cement replacement in mortar: Performance evaluation under normal and elevated temperature. Waste and Biomass Valorization, 1–18.
  • Gupta, S., & Kua, H. W. (2020). Application of rice husk biochar as filler in cenosphere modified mortar: Preparation, characterization and performance under elevated Temperature. Construction and Building Materials, 253, 119083–119098. https://doi.org/10.1016/j.conbuildmat.2020.119083
  • Gupta, S., Kua, H. W., & Cynthia, S. Y. T. (2017). Use of biochar-coated polypropylene fibers for carbon sequestration and physical improvement of mortar. Cement and Concrete Composites, 83, 171–187. https://doi.org/10.1016/j.cemconcomp.2017.07.012
  • Gupta, S., Kua, H. W., & Koh, H. J. (2018). Application of biochar from food and wood waste as green admixture for cement mortar. Science of the Total Environment, 619–620, 419–435. https://doi.org/10.1016/j.scitotenv.2017.11.044
  • Gupta, S., Kua, H. W., & Low, C. Y. (2018). Use of biochar as carbon sequestering additive in cement mortar. Cement and Concrete Composites, 87, 110–129. https://doi.org/10.1016/j.cemconcomp.2017.12.009
  • Gupta, S., Kua, H. W., & Pang, S. D. (2018a). Biochar-mortar composite: Manufacturing, evaluation of physical properties and economic viability. Construction and Building Materials, 167, 874–889. https://doi.org/10.1016/j.conbuildmat.2018.02.104
  • Gupta, S., Kua, H. W., & Pang, S. D. (2018b). Healing cement mortar by immobilization of bacteria in biochar: An integrated approach of self-healing and carbon sequestration. Cement and Concrete Composites, 86, 238–254. https://doi.org/10.1016/j.cemconcomp.2017.11.015
  • Gupta, S., Muthukrishnan, S., & Kua, H. W. (2021). Comparing influence of inert biochar and silica rich biochar on cement mortar – Hydration kinetics and durability under chloride and sulfate environment. Construction and Building Materials, 268, 121142–121161. https://doi.org/10.1016/j.conbuildmat.2020.121142
  • Gupta, S., Wei, K. H., & Dai, P. S. (2020). Effect of biochar on mechanical and permeability properties of concrete exposed to elevated temperature. Construction and Building Materials, 234, 117338–117353. https://doi.org/10.1016/j.conbuildmat.2019.117338
  • Han, T. (2020). Application of peanut biochar as admixture in cement mortar. IOP Conference Series: Earth and Environmental Science, 531(1), 012061. https://doi.org/10.1088/1755-1315/531/1/012061
  • Huang, Y., Anderson, M., McIlveen-Wright, D., Lyons, G. A., McRoberts, W. C., Wang, Y. D., Roskilly, A. P., & Hewitt, N. J. (2015). Biochar and renewable energy generation from poultry litter waste: A technical and economic analysis based on computational simulations. Applied Energy, 160, 656–663. https://doi.org/10.1016/j.apenergy.2015.01.029
  • Huang, H., Gao, X., Wang, H., & Ye, H. (2017). Influence of rice husk ash on strength and permeability of ultra-high performance concrete. Construction and Building Materials, 149, 621–628. https://doi.org/10.1016/j.conbuildmat.2017.05.155
  • ithaka-institut.org/en/home.
  • Jang, J. G., & Lee, H. K. (2016). Microstructural densification and CO2uptake promoted by the carbonation curing of belite-rich Portland cement. Cement and Concrete Research, 82, 50–57. https://doi.org/10.1016/j.cemconres.2016.01.001
  • Jiang, X., Li, B., Li, J., & Guo, J. (2020). Study on the properties of different biochar to cement paste. IOP Conference Series: Earth and Environmental Science, 526(1), 012085. https://doi.org/10.1088/1755-1315/526/1/012085
  • Julaganti, A., Choudhary, R., & Kumar, A. (2017). Rheology of modified binders under varying doses of WMA additive–Sasobit. Petroleum Science and Technology, 35(10), 975–982. https://doi.org/10.1080/10916466.2017.1297827
  • Jung, S., Park, Y.-K., & Kwon, E. E. (2019). Strategic use of biochar for CO2 capture and sequestration. Journal of CO2 Utilization, 32, 128–139. https://doi.org/10.1016/j.jcou.2019.04.012
  • Jung, S. H., & Kim, J. S. (2014). Production of biochars by intermediate pyrolysis and activated carbons from oak by three activation methods using CO2. Journal of Analytical and Applied Pyrolysis, 107(2014), 116–122. https://doi.org/10.1016/j.jaap.2014.02.011
  • Kamaluddin, S., Kurniawan, D., Abu Bakar, M. S., & Abu Samah, Z. (2020). Biochar as a conducting filler to enhance electrical conduction monitoring for concrete structures. Key Engineering Materials, 847, 149–154. https://doi.org/10.4028/www.scientific.net/KEM.847.149
  • Kamran, M., Malik, Z., Parveen, A., Huang, L., Riaz, M., Bashir, S., Mustafa, A., Abbasi, G. H., Xue, B., & Ali, U. (2020). Ameliorative effects of biochar on rapeseed (Brassica napus L.) growth and heavy metal immobilization in soil irrigated with untreated wastewater. Journal of Plant Growth Regulation, 39(1), 266–281. https://doi.org/10.1007/s00344-019-09980-3
  • Kang, Y., Chang, S. J., & Kim, S. (2018). Hygrothermal behavior evaluation of walls improving heat and moisture performance on gypsum boards by adding porous materials. Energy and Buildings, 165, 431–439. https://doi.org/10.1016/j.enbuild.2017.12.052
  • Karimi, I. A., Shamsuzzaman, F., & Saeys, M. (2013). Carbon capture and storage/utilisation – Singapore perspectives.
  • Kellogg, W. W. (2019). Climate change and society: Consequences of increasing atmospheric carbon dioxide. Routledge.
  • Khaliq, W., & Ehsan, M. B. (2016). Crack healing in concrete using various bio influenced self-healing techniques. Construction and Building Materials, 102, 349–357. https://doi.org/10.1016/j.conbuildmat.2015.11.006
  • Khan, A. Z., Ding, X., Khan, S., Ayaz, T., Fidel, R., & Khan, M. A. (2020). Biochar efficacy for reducing heavy metals uptake by Cilantro (Coriandrum sativum) and spinach (Spinaccia oleracea) to minimize human health risk. Chemosphere, 244, 125543. https://doi.org/10.1016/j.chemosphere.2019.125543
  • Kim, P., Johnson, A., Edmunds, C. W., Radosevich, M., Vogt, F., Rials, T. G., & Labbé, N. (2011). Surface functionality and carbon structures in lignocellulosic-derived biochars produced by fast pyrolysis. Energy & Fuels, 25(10), 4693–4703. https://doi.org/10.1021/ef200915s
  • Kua, H. W., Gupta, S., Aday, A. N., & Srubar, W. V. (2019). Biochar-immobilized bacteria and superabsorbent polymers enable selfhealing of fiber-reinforced concrete after multiple damage cycles. Cement and Concrete Composites, 100, 35–52. https://doi.org/10.1016/j.cemconcomp.2019.03.017
  • Kumar, A., Choudhary, R., Narzari, R., Kataki, R., & Shukla, S. K. (2018). Evaluation of bio-asphalt binders modified with biochar: A pyrolysis by-product of Mesua ferrea seed cover waste. Cogent Engineering, 5(1), 1548534–1548549. https://doi.org/10.1080/23311916.2018.1548534
  • Lee, H., Yang, S., Wi, S., & Kim, S. (2019). Thermal transfer behavior of biochar-natural inorganic clay composite for building envelope insulation. Construction and Building Materials, 223, 668–678. https://doi.org/10.1016/j.conbuildmat.2019.06.215
  • Legan, M., Gotvajn, A. Ž., & Zupan, K. (2022). Potential of biochar use in building materials. Journal of Environmental Management, 309, 114704–114715. https://doi.org/10.1016/j.jenvman.2022.114704
  • Li, S., Liang, C., & Shangguan, Z. (2017). Effects of apple branch biochar on soil C mineralization and nutrient cycling under two levels of N. The Science of the Total Environment, 607–608, 109–119. https://doi.org/10.1016/j.scitotenv.2017.06.275
  • Li, Z. (2011). Introduction to concrete. In Advanced concrete technology (p. 1). Wiley.
  • Lima, I. M., Boateng, A. A., & Klasson, K. T. (2010). Physicochemical and adsorptive properties of fast-pyrolysis bio-chars and their steam activated counterparts. Journal of Chemical Technology & Biotechnology, 85(11), 1515–1521.
  • Liu, R., Xiao, H., Guan, S., Zhang, J., & Yao, D. (2020). Technology and method for applying biochar in building materials to evidently improve the carbon capture ability. Journal of Cleaner Production, 273, 123154–123168. https://doi.org/10.1016/j.jclepro.2020.123154
  • Liu, W. J., Jiang, H., & Yu, H. Q. (2015). Development of biochar-based functional materials: Toward a sustainable platform carbon material. Chemical Reviews, 115(22), 12251–12285. https://doi.org/10.1021/acs.chemrev.5b00195
  • Ludwig, H.-M., & Zhang, W. (2015). Research review of cement clinker chemistry. Cement and Concrete Research, 78, 24–37. https://doi.org/10.1016/j.cemconres.2015.05.018
  • Meddah, M. S., Ismail, M. A., El-Gamal, S., & Fitriani, H. (2018). Performances evaluation of binary concrete designed with silica fume and metakaolin. Construction and Building Materials, 166, 400–412. https://doi.org/10.1016/j.conbuildmat.2018.01.138
  • Mehta, A., & Ashish, D. K. (2020). Silica fume and waste glass in cement concrete production: A review. Journal of Building Engineering, 29, 100888–100905. https://doi.org/10.1016/j.jobe.2019.100888
  • Mindess, S., & Young, J. F. (1981). Concrete. Prentice-Hall.
  • Mo, K. H., Thomas, B. S., Yap, S. P., Abutaha, F., & Tan, C. G. (2020). Viability of agricultural wastes as substitute of natural aggregate in concrete: A review on the durability-related properties. Journal of Cleaner Production, 275, 123062–123072. https://doi.org/10.1016/j.jclepro.2020.123062
  • Mohammadi, A., Cowie, A. L., Cacho, O., Kristiansen, P., Anh Mai, T. L., & Joseph, S. (2017). Biochar addition in rice farming systems: Economic and energy benefits. Energy, 140, 415–425. https://doi.org/10.1016/j.energy.2017.08.116
  • Mrad, R., & Chehab, G. (2019). Mechanical and microstructure properties of biochar-based mortar: An internal curing agent for. Sustainability, 11(9), 2491–2505. https://doi.org/10.3390/su11092491
  • Muthukrishnan, S., Gupta, S., & Kua, H. W. (2019). Application of rice husk biochar and thermally treated low silica rice husk ash to improve physical properties of cement mortar. Theoretical and Applied Fracture Mechanics, 104, 102376–102388. https://doi.org/10.1016/j.tafmec.2019.102376
  • Nair, J. J., Shika, S., & Sreedharan, V. (2020). Biochar amended concrete for carbon sequestration. IOP Conference Series: Materials Science and Engineering, 936(1), 012007–012012. https://doi.org/10.1088/1757-899X/936/1/012007
  • Natalio, F., Corrales, T. P., Feldman, Y., Lew, B., & Graber, E. R. (2020). Sustainable lightweight biochar-based composites with electromagnetic shielding properties. ACS Omega, 5(50), 32490–32497.
  • Navaratnam, S., Wijaya, H., Rajeev, P., Mendis, P., & Nguyen, K. (2021). Residual stress-strain relationship for the biochar-based mortar after exposure to elevated temperature. Case Studies in Construction Materials, 14, e00540–e00554. https://doi.org/10.1016/j.cscm.2021.e00540
  • Newalkar, G., Iisa, K., D’Amico, A. D., Sievers, C., & Agrawal, P. (2014). Effect of temperature, pressure, and residence time on pyrolysis of pine in an entrained flow reactor. Energy & Fuels, 28(8), 5144–5157. https://doi.org/10.1021/ef5009715
  • Ofori-Boadu, A. N., Kelley, R., Aryeetey, F., Fini, E., & Akangah, P. (2017). The influence of swine-waste biochar on the early-age characteristics of cement paste. International Journal of Engineering Research and Applications, 07(06), 01–07. https://doi.org/10.9790/9622-0706010107
  • Panwar, N. L., Pawar, A., & Salvi, B. L. (2019). Comprehensive review on production and utilization of biochar. SN Applied Sciences, 1(2), 168–187. https://doi.org/10.1007/s42452-019-0172-6
  • Paul, S., Kauser, H., Jain, M. S., Khwairakpam, M., & Kalamdhad, A. S. (2020). Biogenic stabilization and heavy metal immobilization during vermicomposting of vegetable waste with biochar amendment. Journal of Hazardous Materials, 390, 121366. https://doi.org/10.1016/j.jhazmat.2019.121366
  • Pauzi, N. I. M., Musa, A. S., & Radhi, M. S. M. (2020). Biochar usage for improving concrete mix as cement replacement. International Journal of Advanced Research in Engineering and Technology (IJARET), 11(8), 594–601.
  • Pedro, D., De Brito, J., & Evangelista, L. (2017). Evaluation of high-performance concrete with recycled aggregates: Use of densified silica fume as cement replacement. Construction and Building Materials, 147, 803–814. https://doi.org/10.1016/j.conbuildmat.2017.05.007
  • Plaza, M. G., González, A. S., Pis, J. J., Rubiera, F., & Pevida, C. (2014). Production of microporous biochars by single-step oxidation: Effect of activation conditions on CO2 capture. Applied Energy, 114, 551–562. https://doi.org/10.1016/j.apenergy.2013.09.058
  • Plaza, M. G., Pevida, C., Martín, C. F., Fermoso, J., Pis, J. J., & Rubiera, F. (2010). Developing almond shell-derived activated carbons as CO2 adsorbents. Separation and Purification Technology, 71(1), 102–106. https://doi.org/10.1016/j.seppur.2009.11.008
  • Praneeth, S., Guo, R., Wang, T., Dubey, B. K., & Sarmah, A. K. (2020). Accelerated carbonation of biochar reinforced cement-fly ash composites: Enhancing and sequestering CO2 in building materials. Construction and Building Materials, 244, 118363–118372. https://doi.org/10.1016/j.conbuildmat.2020.118363
  • Praneeth, S., Saavedra, L., Zeng, M., Dubey, B. K., & Sarmah, A. K. (2021). Biochar admixtured lightweight, porous and tougher cement mortars: Mechanical, durability and micro computed tomography analysis. The Science of the Total Environment, 750, 142327–142337. https://doi.org/10.1016/j.scitotenv.2020.142327
  • Qambrani, N. A., Rahman, M. M., Won, S., Shim, S., & Ra, C. (2017). Biochar properties and eco-friendly applications for climate change mitigation, waste management, and wastewater treatment: A review. Renewable and Sustainable Energy Reviews, 79, 255–273. https://doi.org/10.1016/j.rser.2017.05.057
  • Qin, J., Niu, A., Liu, Y., & Lin, C. (2021). Arsenic in leafy vegetable plants grown on mine water-contaminated soils: Uptake, human health risk and remedial effects of biochar. Journal of Hazardous Materials, 402, 123488–123496. https://doi.org/10.1016/j.jhazmat.2020.123488
  • Qin, Y., Pang, X., Tan, K., & Bao, T. (2021). Evaluation of pervious concrete performance with pulverized biochar as cement replacement. Cement and Concrete Composites, 119, 104022–104030. https://doi.org/10.1016/j.cemconcomp.2021.104022
  • Quilliam, R. S., Rangecroft, S., Emmett, B. A., Deluca, T. H., & Jones, D. L. (2013). Is biochar a source or sink for polycyclic aromatic hydrocarbon (PAH) compounds in agricultural soils? GCB Bioenergy, 5(2), 96–103. https://doi.org/10.1111/gcbb.12007
  • Restuccia, L., & Ferro, G. A. (2018). Influence of filler size on the mechanical properties of cement-based composites. Fatigue & Fracture of Engineering Materials & Structures, 41(4), 797–805. https://doi.org/10.1111/ffe.12694
  • Restuccia, L., Ferro, G. A., Suarez-Riera, D., Sirico, A., Bernardi, P., Belletti, B., & Malcevschi, A. (2020). Mechanical characterization of different biochar-based cement composites. Procedia Structural Integrity, 25, 226–233. https://doi.org/10.1016/j.prostr.2020.04.027
  • Restuccia, L., Reggio, A., Ferro, G. A., & Kamranirad, R. (2017). Fractal analysis of crack paths into innovative carbon-based cementitious composites. Theoretical and Applied Fracture Mechanics, 90, 133–141. https://doi.org/10.1016/j.tafmec.2017.03.016
  • Roberts, K. G., Gloy, B. A., Joseph, S., Scott, N. R., & Lehmann, J. (2010). Life cycle assessment of biochar systems: Estimating the energetic, economic, and climate change potential. Environmental Science & Technology, 44(2), 827–833. https://doi.org/10.1021/es902266r
  • Roussat, N., Méhu, J., Abdelghafour, M., & Brula, P. (2008). Leaching behaviour of hazardous demolition waste. Waste Management (New York, N.Y.), 28(11), 2032–2040. https://doi.org/10.1016/j.wasman.2007.10.019
  • Ruzickova, J., Koval, S., Raclavska, H., Kucbel, M., Svedova, B., Raclavsky, K., Juchelkova, D., & Scala, F. (2021). A comprehensive assessment of potential hazard caused by organic compounds in biochar for agricultural use. Journal of Hazardous Materials, 403, 123644–123659. https://doi.org/10.1016/j.jhazmat.2020.123644
  • Saca, N., Dimache, A., Radu, L. R., & Iancu, I. (2017). Leaching behavior of some demolition wastes. Journal of Material Cycles and Waste Management, 19(2), 623–630. https://doi.org/10.1007/s10163-015-0459-7
  • Sakhiya, A. K., Anand, A., & Kaushal, P. (2020). Production, activation, and applications of biochar in recent times. Biochar, 2(3), 253–285. https://doi.org/10.1007/s42773-020-00047-1
  • Savi, P., & Yasir, M. (2020). Waveguide measurements of biochar derived from sewage sludge. Electronics Letters, 56(7), 335–337. https://doi.org/10.1049/el.2019.4103
  • Savi, P., Yasir, M., Bartoli, M., Giorcelli, M., & Longo, M. (2020). Electrical and microwave characterization of thermal annealed sewage sludge derived biochar composites. Applied Sciences, 10(4), 1334–1345. https://doi.org/10.3390/app10041334
  • Schröder, E., Thomauske, K., Weber, C., Hornung, A., & Tumiatti, V. (2007). Experiments on the generation of activated carbon from biomass. Journal of Analytical and Applied Pyrolysis, 79(12), 106–111. https://doi.org/10.1016/j.jaap.2006.10.015
  • Sevilla, M., & Fuertes, A. B. (2011). Sustainable porous carbons with a superior performance for CO2 capture. Energy & Environmental Science, 4(5), 1765–1771. https://doi.org/10.1039/c0ee00784f
  • Shaaban, A., Se, S.-M., Mitan, N. M. M., & Dimin, M. F. (2013). Characterization of biochar derived from rubber wood sawdust through slow pyrolysis on surface porosities and functional groups. Procedia Engineering, 68, 365–371. https://doi.org/10.1016/j.proeng.2013.12.193
  • Shackley, S., Hammond, J., Gaunt, J., & Ibarrola, R. (2011). The feasibility and costs of biochar deployment in the UK. Carbon Management, 2(3), 335–356. https://doi.org/10.4155/cmt.11.22
  • Shafeeyan, M. S., Daud, W. M. A. W., Houshmand, A., & Arami-Niya, A. (2011). Ammonia modification of activated carbon to enhance carbon dioxide adsorption: Effect of pre-oxidation. Applied Surface Science, 257(9), 3936–3942. https://doi.org/10.1016/j.apsusc.2010.11.127
  • Shafie, S., Salleh, M., & Hang, L. L. (2012). Effect of pyrolysis temperature on the biochar nutrient and water retention capacity. Journal of Purity, Utility Reaction and Environment, 1, 293–307.
  • Shamurad, B., Sallis, P., Petropoulos, E., Tabraiz, S., Ospina, C., Leary, P., Dolfing, J., & Gray, N. (2020). Stable biogas production from single-stage anaerobic digestion of food waste. Applied Energy, 263, 114609–114621. https://doi.org/10.1016/j.apenergy.2020.114609
  • Sharma, H. B., Panigrahi, S., Sarmah, A. K., & Dubey, B. K. (2020). Downstream augmentation of hydrothermal carbonization with anaerobic digestion for integrated biogas and hydrochar production from the organic fraction of municipal solid waste: A circular economy concept. The Science of the Total Environment, 706, 135907. https://doi.org/10.1016/j.scitotenv.2019.135907
  • Shen, Y., Song, S., Thian, B. W. Y., Fong, S. L., Ee, A. W. L., Arora, S., Ghosh, S., Li, S. F. Y., Tan, H. T. W., Dai, Y., & Wang, C.-H. (2020). Impacts of biochar concentration on the growth performance of a leafy vegetable in a tropical city and its global warming potential. Journal of Cleaner Production, 264, 121678–121687. https://doi.org/10.1016/j.jclepro.2020.121678
  • Sherwood, J. (2020). The significance of biomass in a circular economy. Bioresource Technology, 300, 122755–122762. https://doi.org/10.1016/j.biortech.2020.122755
  • Shi, H. S., & Kan, L. L. (2009). Leaching behavior of heavy metals from municipal solid wastes incineration (MSWI) fly ash used in concrete. Journal of Hazardous Materials, 164(23), 750–754. https://doi.org/10.1016/j.jhazmat.2008.08.077
  • Shi, R.-Y., Hong, Z.-N., Li, J.-Y., Jiang, J., Kamran, M. A., Xu, R.-K., & Qian, W. (2018). Peanut straw biochar increases the resistance of two Ultisols derived from different parent materials to acidification: A mechanism study. Journal of Environmental Management, 210, 171–179. https://doi.org/10.1016/j.jenvman.2018.01.028
  • Silva, F. B., Boon, N., D., & Belie, N. (2015). Industrial application of biological self-healing concrete: Challenges and economical feasibility. Journal of Commercial Biotechnology, 21(1).
  • Sirico, A., Bernardi, P., Belletti, B., Malcevschi, A., Dalcanale, E., Domenichelli, I., Fornoni, P., & Moretti, E. (2020a). Mechanical characterization of cement-based materials containing biochar from gasification. Construction and Building Materials, 246, 118490–118500. https://doi.org/10.1016/j.conbuildmat.2020.118490
  • Sirico, A., Bernardi, P., Belletti, B., Malcevschi, A., Restuccia, L., Ferro, G. A., & Suarez-Riera, D. (2020b). Biochar-based cement pastes and mortars with enhanced mechanical Properties. Frattura ed Integrità Strutturale, 14(54), 297–316. https://doi.org/10.3221/IGF-ESIS.54.21
  • Smith, P. (2016). Soil carbon sequestration and biochar as negative emission technologies. Global Change Biology, 22(3), 1315–1324. https://doi.org/10.1111/gcb.13178
  • Song, S., Arora, S., Laserna, A. K. C., Shen, Y., Thian, B. W. Y., Cheong, J. C., Tan, J. K. N., Chiam, Z., Fong, S. L., Ghosh, S., Ok, Y. S., Li, S. F. Y., Tan, H. T. W., Dai, Y., & Wang, C.-H. (2020). Biochar for urban agriculture: Impacts on soil chemical characteristics and on Brassica rapa growth, nutrient content and metabolism over multiple growth cycles. The Science of the Total Environment, 727, 138742–138754. https://doi.org/10.1016/j.scitotenv.2020.138742
  • Statista. (2021). https://www.statista.com/statistics/267364/world-cement-production-by-country/
  • Suarez, D. (2018). Biochar as eco-friendly filler to enhance the sustainable performance of cement. POLITECNICO DI TORINO.
  • Suarez-Riera, D., Restuccia, L., & Ferro, G. A. (2020). The use of Biochar to reduce the carbon footprint of cement-based materials. Procedia Structural Integrity, 26, 199–210. https://doi.org/10.1016/j.prostr.2020.06.023
  • Tan, K., Pang, X., Qin, Y., & Wang, J. (2020). Properties of cement mortar containing pulverized biochar pyrolyzed at different temperatures. Construction and Building Materials, 263, 120616–120626. https://doi.org/10.1016/j.conbuildmat.2020.120616
  • Tan, K., Qin, Y., Du, T., Li, L., Zhang, L., & Wang, J. (2021). Biochar from waste biomass as hygroscopic filler for pervious concrete to improve evaporative cooling performance. Construction and Building Materials, 287, 123078–123087. https://doi.org/10.1016/j.conbuildmat.2021.123078
  • Thangarajan, R., Bolan, N. S., Kunhikrishnan, A., Wijesekara, H., Xu, Y., Tsang, D. C. W., Song, H., Ok, Y. S., & Hou, D. (2018). The potential value of biochar in the mitigation of gaseous emission of nitrogen. The Science of the Total Environment, 612, 257–268. https://doi.org/10.1016/j.scitotenv.2017.08.242
  • The International Biochar Initiative. (2014). Standardized product definition and product testing guidelines for biochar. International Biochar Initiative.
  • Thomas, B. S., Yang, J., Bahurudeen, A., Abdalla, J. A., Hawileh, R. A., Hamada, H. M., Nazar, S., Jittin, V., & Ashish, D. K. (2021). Sugarcane bagasse ash as supplementary cementitious material in concrete - A review. Materials Today Sustainability, 15, 100086–100104. https://doi.org/10.1016/j.mtsust.2021.100086
  • Thomas, B. S., Yang, J., Mo, K. H., Abdalla, J. A., Hawileh, R. A., & Ariyachandra, E. (2021). Biomass ashes from agricultural wastes as supplementary cementitious materials or aggregate replacement in cement/geopolymer concrete: A comprehensive review. Journal of Building Engineering, 40, 102332–102343. https://doi.org/10.1016/j.jobe.2021.102332
  • Tommaso, M. D., & Bordonzotti, I. (2016). NOx Adsorption, Fire Resistance and CO2 Sequestration of High Performance, High Durability Concrete Containing Activated Carbon. In: Second International Conference on concrete Sustainability. Madrid 2016.
  • Wainaina, S., Awasthi, M. K., Sarsaiya, S., Chen, H., Singh, E., Kumar, A., Ravindran, B., Awasthi, S. K., Liu, T., Duan, Y., Kumar, S., Zhang, Z., & Taherzadeh, M. J. (2020). Resource recovery and circular economy from organic solid waste using aerobic and anaerobic digestion technologies. Bioresource Technology, 301, 122778–122791. https://doi.org/10.1016/j.biortech.2020.122778
  • Walters, R. C., Fini, E. H., & Abu-Lebdeh, T. (2014). Enhancing asphalt rheological behavior and aging susceptibility using bio-char and nanoclay. American Journal of Engineering and Applied Sciences, 7(1), 66–76.
  • Wang, L., Chen, L., Tsang, D. C., Guo, B., Yang, J., Shen, Z., Hou, D., Ok, Y. S., & Poon, C. S. (2020). Biochar as green additives in cement-based composites with carbon dioxide curing. Journal of Cleaner Production, 258, 120678–120685. https://doi.org/10.1016/j.jclepro.2020.120678
  • Wang, L., Chen, L., Tsang, D. C., Kua, H. W., Yang, J., Ok, Y. S., Ding, S., Hou, D., & Poon, C. S. (2019). The roles of biochar as green admixture for sediment-based construction products. Cement and Concrete Composites, 104, 103348–103357. https://doi.org/10.1016/j.cemconcomp.2019.103348
  • Wei, H., Deng, S., Hu, B., Chen, Z., Wang, B., Huang, J., & Yu, G. (2012). Granular bamboo-derived activated carbon for high CO(2) adsorption: The dominant role of narrow micropores. ChemSusChem, 5(12), 2354–2360. https://doi.org/10.1002/cssc.201200570
  • Wickramaratne, N. P., & Jaroniec, M. (2013). Activated carbon spheres for CO2 adsorption. ACS Applied Materials & Interfaces, 5(5), 1849–1855. https://doi.org/10.1021/am400112m
  • Woolf, D., Amonette, J. E., Street-Perrott, F. A., Lehmann, J., & Joseph, S. (2010). Sustainable biochar to mitigate global climate change. Nature Communications, 1, 56–64. https://doi.org/10.1038/ncomms1053
  • Woolley, S., & Hallowell, B. (2018). Biomass controls (p. 15). LLC, Center for Disease Control.
  • Wu, F., Yu, Q., & Liu, C. (2021). Durability of thermal insulating bio-based lightweight concrete: Understanding of heat treatment on bio-aggregates. Construction and Building Materials, 69, 121800–121814.
  • Xiong, Z., Shihong, Z., Haiping, Y., Tao, S., Yingquan, C., & Hanping, C. (2013). Influence of NH3/CO2 modification on the characteristic of biochar and the CO2 capture. BioEnergy Research, 6(4), 1147–1153. https://doi.org/10.1007/s12155-013-9304-9
  • Yang, S., Wi, S., Lee, J., Lee, H., & Kim, S. (2019). Biochar-red clay composites for energy efficiency as eco-friendly building materials: Thermal and mechanical performance. Journal of Hazardous Materials, 373, 844–855. https://doi.org/10.1016/j.jhazmat.2019.03.079
  • Yasir, M., di Summa, D., & Ruscica, G. (2020). Shielding properties of cement composites filled with commercial biochar. Electronics, 9, 819–828.
  • Zeeshan, M., Ahmad, W., Hussain, F., Ahamd, W., Numan, M., Shah, M., & Ahmad, I. (2020). Phytostabalization of the heavy metals in the soil with biochar applications, the impact on chlorophyll, carotene, soil fertility and tomato crop yield. Journal of Cleaner Production, 255, 120318–120327. https://doi.org/10.1016/j.jclepro.2020.120318
  • Zhang, D., Huang, X., & Wang, Z. (2017). The performance and carbon sequestration of the biochar concrete. Advances in Environmental Protection, 7(6), 465–475.
  • Zhang, L., Li, F., Kuroki, A., Loh, K.-C., Wang, C.-H., Dai, Y., & Tong, Y. W. (2020). Methane yield enhancement of mesophilic and thermophilic anaerobic co-digestion of algal biomass and food waste using algal biochar: Semi-continuous operation and microbial community analysis. Bioresource Technology, 302, 122892–122900. https://doi.org/10.1016/j.biortech.2020.122892
  • Zhang, L., Lim, E. Y., Loh, K.-C., Ok, Y. S., Lee, J. T., Shen, Y., Wang, C.-H., Dai, Y., & Tong, Y. W. (2020). Biochar enhanced thermophilic anaerobic digestion of food waste: Focusing on biochar particle size, microbial community analysis and pilot-scale application. Energy Conversion and Management, 209, 112654–112667. https://doi.org/10.1016/j.enconman.2020.112654
  • Zhang, P., Sun, H., & Yu, L. (2013). Adsorption and catalytic hydrolysis of carbaryl and atrazine on pig manure-derived bio-chars: Impact of structural properties of bio-chars. Journal of Hazardous Materials, 245(3), 217–224.
  • Zhao, S., Huang, B., & Shu, X. (2014). Laboratory investigation of biochar-modified asphalt mixture. Transportation Research Record: Journal of the Transportation Research Board, No. 2445 (pp. 56–63). Transportation Research Board of the National Academies.
  • Zhao, S., Huang, B., Ye, X. P., Shu, X., & Jia, X. (2014). Utilizing biochar as a bio-modifier for asphalt cement: A sustainable application of bio-fuel by-product. Fuel, 133, 52–62. https://doi.org/10.1016/j.fuel.2014.05.002

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.