268
Views
1
CrossRef citations to date
0
Altmetric
Original Articles

A novel extreme gradient boosting algorithm based model for predicting the scour risk around bridge piers: application to French railway bridges

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, & ORCID Icon
Pages 1104-1122 | Received 08 Oct 2021, Accepted 27 Apr 2022, Published online: 11 May 2022

References

  • Alipour, M., Harris, D. K., Barnes, L. E., Ozbulut, O. E., & Carroll, J. (2017). Load-capacity rating of bridge populations through machine learning: Application of decision trees and random forests. Journal of Bridge Engineering, 22(10), 04017076. https://doi.org/10.1061/(ASCE)BE.1943-5592.0001103
  • Argyroudis, S. A., & Mitoulis, S. A. (2021). Vulnerability of bridges to individual and multiple hazards-floods and earthquakes. Reliability Engineering & System Safety, 210, 107564. https://doi.org/10.1016/j.ress.2021.107564
  • Bento, A. M., Gomes, A., Viseu, T., Couto, L., & Pêgo, J. P. (2020). Risk-based methodology for scour analysis at bridge foundations. Engineering Structures, 223, 111115. https://doi.org/10.1016/j.engstruct.2020.111115
  • Bettess, R. (1992). Hydraulic aspects of bridges: assessment of the risk of scour (EX 2502). Technical Report. HR Wallingford Ltd, Wallingford. https://eprints.hrwallingford.com/315/
  • Breiman, L. (2001). Random forests. Machine Learning, 45(1), 5–32. https://doi.org/10.1023/A:1010933404324
  • Breiman, L., Friedman, J., Stone, C. J., & Olshen, R. A. (1984). Classification and regression trees. Taylor & Francis. https://books.google.fr/books?id=JwQx-WOmSyQC
  • British Highways Agency. (2012). The assessment of scour and other hydraulic actions at highway structures (BD97/12). 3(Part 21), 54. http://www.standardsforhighways.co.uk/ha/standards/dmrb/vol3/section4/%0Abd9712.pdf
  • Brunner, G. (2016). HEC-RAS river analysis system: Hydraulic reference manual,Version 5.0. US Army Corps of Engineers, Institute for Water Resources, Hydrologic Engineering Center.
  • Cattan, J., & Mohammadi, J. (2002). Analysis of bridge condition rating data using neural networks. Computer-Aided Civil and Infrastructure Engineering, 12(6), 419–429. https://doi.org/10.1111/0885-9507.00074
  • Cerema. (2019). Analyse de risque des ponts en site affouillable.
  • Chen, T., & Guestrin, C. (2016). XGBoost [Paper presentation]. A scalable tree boosting system. Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 13–17 August, 785–794. https://doi.org/10.1145/2939672.2939785
  • Cortes, C., & Vapnik, V. (1995). Support-vector networks. Machine Learning, 20(3), 273–297. https://doi.org/10.1007/BF00994018
  • Cristianini, N., & Shawe-Taylor, J. (2000). An introduction to support vector machines and other kernel-based learning methods. In An introduction to support vector machines and other Kernel-based learning methods. Cambridge University Press. https://doi.org/10.1017/cbo9780511801389
  • Deng, L., & Cai, C. S. (2010). Bridge scour: Prediction, modeling, monitoring, and countermeasures—Review. Practice Periodical on Structural Design and Construction, 15(2), 125–134. May, https://doi.org/10.1061/(ASCE)SC.1943-5576.0000041
  • Dong, W., Huang, Y., Lehane, B., & Ma, G. (2020). XGBoost algorithm-based prediction of concrete electrical resistivity for structural health monitoring. Automation in Construction, 114, 103155. https://doi.org/10.1016/j.autcon.2020.103155
  • Eghbalzadeh, A., Hayati, M., Rezaei, A., & Javan, M. (2018). Prediction of equilibrium scour depth in uniform non-cohesive sediments downstream of an apron using computational intelligence. European Journal of Environmental and Civil Engineering, 22(1), 28–41. https://doi.org/10.1080/19648189.2016.1179677
  • Elhag, T. M. S., & Wang, Y.-M. (2007). Risk assessment for bridge maintenance projects: Neural networks versus regression techniques. Journal of Computing in Civil Engineering, 21(6), 402–409. https://doi.org/10.1061/(ASCE)0887-3801(2007)21:6(402)
  • Fawcett, T. (2006). An introduction to ROC analysis. Pattern Recognition Letters, 27(8), 861–874. https://doi.org/10.1016/j.patrec.2005.10.010
  • Franklin, J. (2010). Mapping species distributions: Spatial inference and prediction. Cambridge University Press. https://doi.org/10.1017/CBO9780511810602
  • Froehlich, D. C. (1988). Analysis of onsite measurements of scour at piers. 534–539. http://pubs.er.usgs.gov/publication/70014448
  • Goerlandt, F., Montewka, J., Kuzmin, V., & Kujala, P. (2015). A risk-informed ship collision alert system: Framework and application. Safety Science, 77, 182–204. https://doi.org/10.1016/j.ssci.2015.03.015
  • Goh, A. T. C., & Goh, S. H. (2007). Support vector machines: Their use in geotechnical engineering as illustrated using seismic liquefaction data. Computers and Geotechnics, 34(5), 410–421. https://doi.org/10.1016/j.compgeo.2007.06.001
  • Hager, W. H., & Unger, J. (2010). Bridge pier scour under flood waves. Journal of Hydraulic Engineering, 136(10), 842–847. https://doi.org/10.1061/(ASCE)HY.1943-7900.0000281
  • Harris, C. R., Millman, K. J., van der Walt, S. J., Gommers, R., Virtanen, P., Cournapeau, D., Wieser, E., Taylor, J., Berg, S., Smith, N. J., Kern, R., Picus, M., Hoyer, S., van Kerkwijk, M. H., Brett, M., Haldane, A., Del Río, J. F., Wiebe, M., Peterson, P., … Oliphant, T. E. (2020). Array programming with NumPy. Nature, 585(7825), 357–362. https://doi.org/10.1038/s41586-020-2649-2
  • Hong, J. H., Goyal, M. K., Chiew, Y. M., & Chua, L. H. C. (2012). Predicting time-dependent pier scour depth with support vector regression. Journal of Hydrology, 468–469, 241–248. https://doi.org/10.1016/j.jhydrol.2012.08.038
  • Kaya, A. (2010). Artificial neural network study of observed pattern of scour depth around bridge piers. Computers and Geotechnics, 37(3), 413–418. https://doi.org/10.1016/j.compgeo.2009.10.003
  • Kellermann, P., Schönberger, C., & Thieken, A. H. (2016). Large-scale application of the flood damage model RAilway Infrastructure Loss (RAIL). Natural Hazards and Earth System Sciences, 16(11), 2357–2371. https://doi.org/10.5194/nhess-16-2357-2016
  • Kordjazi, A., Pooya Nejad, F., & Jaksa, M. B. (2014). Prediction of ultimate axial load-carrying capacity of piles using a support vector machine based on CPT data. Computers and Geotechnics, 55, 91–102. https://doi.org/10.1016/j.compgeo.2013.08.001
  • Lador, S. M. (2017). What metrics should be used for evaluating a model on an imbalanced data set? (precision + recall or ROC = TPRFPR). https://towardsdatascience.com/what-metrics-should-we-use-on-imbalanced-data-set-precision-recall-roc-e2e79252aeba
  • Lamb, R., Aspinall, W., Odbert, H., & Wagener, T. (2017). Vulnerability of bridges to scour: Insights from an international expert elicitation workshop. Natural Hazards and Earth System Sciences, 17(8), 1393–1409. https://doi.org/10.5194/nhess-17-1393-2017
  • Laursen, E. M., & Toch, A. (1956). Scour around bridge piers and abutments, Vol. 4. Iowa Highway Research Board.
  • Lee, T. L., Jeng, D. S., Zhang, G. H., & Hong, J. H. (2007). Neural network modeling for estimation of scour depth around bridge piers. Journal of Hydrodynamics, 19(3), 378–386. https://doi.org/10.1016/S1001-6058(07)60073-0
  • Lessmann, S., Baesens, B., Seow, H. V., & Thomas, L. C. (2015). Benchmarking state-of-the-art classification algorithms for credit scoring: An update of research. European Journal of Operational Research, 247(1), 124–136. https://doi.org/10.1016/j.ejor.2015.05.030
  • Link, O., Castillo, C., Pizarro, A., Rojas, A., Ettmer, B., Escauriaza, C., & Manfreda, S. (2017). A model of bridge pier scour during flood waves. Journal of Hydraulic Research, 55(3), 310–323. https://doi.org/10.1080/00221686.2016.1252802
  • Liu, H. K., Chang, F. F., & Skinner, M. M. (1961). Effect of bridge constriction on scour and backwater. Civil Engineering Section.
  • Liu, Z., Gilbert, G., Cepeda, J. M., Lysdahl, A. O. K., Piciullo, L., Hefre, H., & Lacasse, S. (2021). Modelling of shallow landslides with machine learning algorithms. Geoscience Frontiers, 12(1), 385–393. https://doi.org/10.1016/j.gsf.2020.04.014
  • Melville, B. W. (1997). Pier and abutment scour: Integrated approach. Journal of Hydraulic Engineering, 123(2), 125–136. https://doi.org/10.1061/(ASCE)0733-9429(1997)123:2(125)
  • Melville, B. W., & Sutherland, A. J. (1988). Design method for local scour at bridge piers. Journal of Hydraulic Engineering, 114(10), 1210–1226. https://doi.org/10.1061/(ASCE)0733-9429(1988)114:10(1210)
  • Melville, B., & Yee-Meng, C. (1999). Time scale for local scour at bridge piers. Journal of Hydraulic Engineering, 125(1), 59–65. https://doi.org/10.1061/(ASCE)0733-9429(1999)125:1(59)
  • Nanni, L., & Lumini, A. (2009). An experimental comparison of ensemble of classifiers for bankruptcy prediction and credit scoring. Expert Systems with Applications, 36(2), 3028–3033. https://doi.org/10.1016/j.eswa.2008.01.018
  • Olden, J. D., & Jackson, D. A. (2002). Illuminating the ‘black box’: A randomization approach for understanding variable contributions in artificial neural networks. Ecological Modelling, 154(1-2), 135–150. https://doi.org/10.1016/S0304-3800(02)00064-9
  • Pizarro, A., Manfreda, S., & Tubaldi, E. (2020). The science behind scour at bridge foundations: A review. Water, 12(2), 374. https://doi.org/10.3390/w12020374
  • Pizarro, A., Samela, C., Fiorentino, M., Link, O., & Manfreda, S. (2017). BRISENT: An entropy-based model for bridge-pier scour estimation under complex hydraulic scenarios. Water, 9(11), 889. https://doi.org/10.3390/w9110889
  • Rodriguez-Galiano, V. F., Ghimire, B., Rogan, J., Chica-Olmo, M., & Rigol-Sanchez, J. P. (2012). An assessment of the effectiveness of a random forest classifier for land-cover classification. ISPRS Journal of Photogrammetry and Remote Sensing, 67(1), 93–104. https://doi.org/10.1016/j.isprsjprs.2011.11.002
  • Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1986). Learning internal representations by error propagation. in Parallel Distributed Processing: Explorations in the Microstructure of Cognition, Vol. 1: Foundations (pp. 318–362). MIT Press.
  • Samui, P. (2008). Support vector machine applied to settlement of shallow foundations on cohesionless soils. Computers and Geotechnics, 35(3), 419–427. https://doi.org/10.1016/j.compgeo.2007.06.014
  • Samui, P., Sitharam, T. G., & Kurup, P. U. (2008). OCR prediction using support vector machine based on piezocone data. Journal of Geotechnical and Geoenvironmental Engineering, 134(6), 894–898. https://doi.org/10.1061/(ASCE)1090-0241(2008)134:6(894)
  • Shirole, A. M., & Holt, R. C. (1991). Planning for a comprehensive bridge safety assurance program. Transport Research Record, 1290, 39–50. http://worldcat.org/isbn/0309050677
  • SNCF. (2005). Cotation des ouvrages d’art Livret A – fondation en site aquatique.
  • SNCF. (2019). Banque OA-OT.
  • SNCF. (2020). Patrimoine Informatisé des Ouvrages d’Art (PIOA).
  • Sreedhara, B. M., Rao, M., & Mandal, S. (2019). Application of an evolutionary technique (PSO–SVM) and ANFIS in clear-water scour depth prediction around bridge piers. Neural Computing and Applications, 31(11), 7335–7349. https://doi.org/10.1007/s00521-018-3570-6
  • Srivastava, N., Hinton, G., Krizhevsky, A., & Salakhutdinov, R. (2014). Dropout: A simple way to prevent neural networks from overfitting. Journal of Machine Learning Research, 1929–1958, 15. https://doi.org/10.5555/2627435
  • Takayanagi, T., Naito, N., & Manome, R. N. O. (2018). Evaluation method using score table for identifying bridge piers vulnerable to scouring in Japan. In Scour and Erosion IX (1st ed.). CRC Press.
  • Todinov, M. T. (2006). Risk-based reliability analysis and generic principles for risk reduction. Elsevier.
  • Tubaldi, E., Macorini, L., Izzuddin, B. A., Manes, C., & Laio, F. (2017). A framework for probabilistic assessment of clear-water scour around bridge piers. Structural Safety, 69, 11–22. https://doi.org/10.1016/j.strusafe.2017.07.001
  • Van Leeuwen, Z., & Lamb, R. (2014). Flood and scour related failure incidents at railway assets between 1846 and 2013. JBA Trust, https://www.jbatrust.org/how-we-help/publications-resources/risk-analysis/flood-and-scour-related-failure-incidents-at-railway-assets/
  • Wang, C., Liang, F., & Yu, X. (2020). Investigation on scour process around bridge foundations considering soil particles and layer distributions. European Journal of Environmental and Civil Engineering, 1–18. https://doi.org/10.1080/19648189.2020.1850532
  • Wang, L., Wu, C., Tang, L., Zhang, W., Lacasse, S., Liu, H., & Gao, L. (2020). Efficient reliability analysis of earth dam slope stability using extreme gradient boosting method. Acta Geotechnica, 15(11), 3135–3150. https://doi.org/10.1007/s11440-020-00962-4
  • Wang, C., Yu, X., & Liang, F. (2017). A review of bridge scour: mechanism, estimation, monitoring and countermeasures. Natural Hazards, 87(3), 1881–1906. https://doi.org/10.1007/s11069-017-2842-2
  • Wardhana, K., & Hadipriono, F. C. (2003). Study of recent building failures in the United States. Journal of Performance of Constructed Facilities, 17(3), 151–158. https://doi.org/10.1061/(ASCE)0887-3828(2003)17:3(151)
  • Xia, Y., Liu, C., Li, Y. Y., & Liu, N. (2017). A boosted decision tree approach using Bayesian hyper-parameter optimization for credit scoring. Expert Systems with Applications, 78, 225–241. https://doi.org/10.1016/j.eswa.2017.02.017
  • Yanmaz, A. M., & Altinbilek, H. D. (1991). Study of time‐depenbent local scour around bridge piers. Journal of Hydraulic Engineering, 117(10), 1247–1268. https://doi.org/10.1061/(ASCE)0733-9429(1991)117:10(1247)
  • Zhang, W., Wu, C., Zhong, H., Li, Y., & Wang, L. (2021). Prediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization. Geoscience Frontiers, 12(1), 469–477. https://doi.org/10.1016/j.gsf.2020.03.007
  • Zounemat-Kermani, M., Beheshti, A. A., Ataie-Ashtiani, B., & Sabbagh-Yazdi, S. R. (2009). Estimation of current-induced scour depth around pile groups using neural network and adaptive neuro-fuzzy inference system. Applied Soft Computing, 9(2), 746–755. https://doi.org/10.1016/j.asoc.2008.09.006

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.