203
Views
0
CrossRef citations to date
0
Altmetric
Original Articles

Liquefaction of unsaturated soils- volume change and residual shear strength

ORCID Icon, ORCID Icon, ORCID Icon, , &
Pages 1144-1164 | Received 29 Dec 2021, Accepted 03 May 2022, Published online: 16 May 2022

References

  • Arab, A., Belkhatir, M., & Sadek, M. (2016). Saturation effect on behavior of sandy soil under monotonic and cyclic loading: A laboratory investigation. Geotechnical and Geological Engineering, 34(1), 347–358. https://doi.org/10.1007/s10706-015-9949-6
  • Been, K., & Jefferies, M. G. (1985). A state parameter for sand. Géotechnique, 35(2), 99–112. https://doi.org/10.1680/geot.1985.35.2.99
  • Benahmed, N. (2001). Comportement mécanique d’un sable sous cisaillement monotone et cyclique: Application aux phénomènes de liquéfaction et de mobilité cyclique [Dissertation]. Ecole Nationale des Ponts et Chaussées.
  • Biarez, J., Fleureau, J. M., Zerhouni, M. I., & Soepandji, B. S. (1987). Variations de volume des sols argileux lors de cycles de drainage-humidification. Revue Française de Géotechnique, 41(1987), 63–71. https://doi.org/10.1051/geotech/1987041063
  • Bishop, A. W. (1959). The principle of effective stress. Teknisk Ukeblad, volume 106(39).
  • Canou, J., Benahmed, N., Dupla, J. C., & Gennaro, V. D. (2002). Instabilités de liquéfaction et phénomène de mobilité cyclique dans les sables. Revue Française de Géotechnique, N° (98), 29–46. https://doi.org/10.1051/geotech/2002098029
  • Castro, G. (1969). Liquefaction of sands [Dissertation]. Harvard University.
  • Chaney, R. (1978). Saturation effects on the cyclic strength of sands [Paper presentation]. Proceeding ASCE Special Conf. on Earthquake Engineering and Soil Dynamics (pp. 342–358). New York
  • Chu, J., & Wanatowski, D. (2008). Effect of specimen preparation method on the stress-strain behavior of sand in plane-strain compression tests. Geotechnical Testing Journal, 31(4), 101307.
  • Colliat, J. L. (1986). Comportement des matériaux granulaires sous forte contraintes, influence de la nature minéralogique du matériau étudié [Dissertation]. IMG.
  • Doanh, T., Ibraim, E., & Matiotti, R. (1997). Undrained instability of very loose Hostun sand in triaxial compression and extension. Part 1: Experimental observations. Mechanics of Cohesive-Frictional Materials, 2(1), 47–70. https://doi.org/10.1002/(SICI)1099-1484(199701)2:1<47::AID-CFM26>3.0.CO;2-9
  • Fargeix, D. (1986). Conception et réalisation d’une presse triaxiale dynamique-application à la mesure des propriétés des sols sous sollicitations sismiques [Dissertation]. IRIGM.
  • Fleureau, J. M., Kheirbek-Saoud, S., Soemitro, R., & Taibi, S. (1993). Behavior of clayey soils on drying-wetting paths. Canadian Geotechnical Journal, 30(2), 287–296. https://doi.org/10.1139/t93-024
  • Flora, A., Bilotta, E., Chiaradonna, A., Lirer, S., Mele, L., & Pingue, L. (2021). A field trial to test the efficiency of induced partial saturation and horizontal drains to mitigate the susceptibility of soils to liquefaction. Bulletin of Earthquake Engineering, volume 19(10), 3835–3830. https://doi.org/10.1007/s10518-020-00914-z
  • He, J. (2013). Mitigation of liquefaction of sand using microbial methods [Dissertation]. Nanyang Technological Universty.
  • Idriss, I. M., & Boulanger, R. W. (2008). Soil liquefaction during earthquakes. Earthquake Engineering Research Institute (EERI).
  • Ishihara, K. (1993). Liquefaction and flow failure during earthquakes. Geotechnique, 43(3), 351–415. https://doi.org/10.1680/geot.1993.43.3.351
  • Ishihara, K., Harada, K., Lee, W. F., Chan, C. C., & Safiullah, A. M. M. (2016). Post-liquefaction settlement analyses based on the volume change characteristics of undisturbed and reconstituted samples. Soils and Foundations, 56(3), 533–546. https://doi.org/10.1016/j.sandf.2016.04.019
  • Ishihara, K., Tsuchiya, H., Huang, Y., & Kamada, K. (2001). Recent studies on liquefaction resistance of sand effect of saturation [Paper presentation]. Proceedings of 4th Conference, Recent Advances in Geotechnical Earth Engineering, Keynote Lecture.
  • Ishihara, K., Tsukamoto, Y., Nakazawa, H., Kamada, K., & Huang, Y. (2002). Resistance of partly saturated sand to liquefaction with reference to longitudinal and shear wave velocities. Soils and Foundations, 42(6), 93–105. https://doi.org/10.3208/sandf.42.6_93
  • Jennings, J. E. B., & Burland, J. B. (1962). Limitations to the use of effective stresses in partly saturated soils. Geotechnique, 12(2), 125–144. https://doi.org/10.1680/geot.1962.12.2.125
  • Keramatikerman, M., Chegenizadeh, A., & Nikraz, H. (2020). Effect of flyash on post-cyclic behavior of sand. Journal of Earthquake Engineering, 24(12), 2033–2045. https://doi.org/10.1080/13632469.2018.1494643
  • Lade, P. V., & Hernandez, S. B. (1977). Membrane penetration effects in undrained tests. Journal of the Geotechnical Engineering Division, 103(2), 109–125. https://doi.org/10.1061/AJGEB6.0000377
  • Lu, N., & Likos, W. J. (2006). Suction stress characteristic curve for unsaturated soil. Journal of Geotechnical and Geoenvironmental Engineering, 132(2), 131–142. https://doi.org/10.1061/(ASCE)1090-0241(2006)132:2(131)
  • Mase, L. Z., Likitlersuang, S., & Tobita, T. (2019). Cyclic behaviour and liquefaction resistance of Izumio sands in Osaka, Japan. Marine Georesources & Geotechnology, 37(7), 765–774. https://doi.org/10.1080/1064119X.2018.1485793
  • Mase, L. Z., Likitlersuang, S., & Tobita, T. (2022). Verification of liquefaction potential during the strong earthquake at the border of Thailand-Myanmar. Journal of Earthquake Engineering, 26(4), 2023–2050. https://doi.org/10.1080/13632469.2020.1751346
  • Matyas, E. L., & Radhakrishna, H. S. (1968). Volume change characteristics of partially saturated soils. G’eotechnique, 18(4), 432–448. https://doi.org/10.1680/geot.1968.18.4.432
  • Mele, L., Chiaradonna, A., Lirer, S., & Flora, A. (2021). A robust empirical model to estimate earthquake-induced excess pore water pressure in saturated and non-saturated soils. Bulletin of Earthquake Engineering, 19(10), 3865–3829. https://doi.org/10.1007/s10518-020-00970-5
  • Mele, L., Tan Tian, J., Lirer, S., Flora, A., & Koseki, J. (2019). Liquefaction resistance of unsaturated sands: Experimental evidence and theoretical interpretation. Géotechnique, 69(6), 541–553. https://doi.org/10.1680/jgeot.18.P.042
  • Okamura, M., & Soga, Y. (2006). Effects of pore fluid compressibility on liquefaction resistance of partially saturated sand. Soils and Foundations, 46(5), 695–700. https://doi.org/10.3208/sandf.46.695
  • Okamura, M., Takebayashi, M., Nishida, K., Fujii, N., Jinguji, M., Imasato, T., Yasuhara, H., & Nakagawa, E. (2011). In-situ desaturation test by air injection and its evaluation through field monitoring and multiphase flow simulation. Journal of Geotechnical and Geoenvironmental Engineering, 137(7), 643–652. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000483
  • Ornthammarath, T. (2013). A note on the strong ground motion recorded during the Mw 6.8 earthquake in Myanmar on 24 March 2011. Bulletin of Earthquake Engineering, 11(1), 241–254. https://doi.org/10.1007/s10518-012-9385-4
  • Poulos, S. J. (1981). The steady state of deformation. Journal of the Geotechnical Engineering Division, 107(5), 553–562. https://doi.org/10.1061/AJGEB6.0001129
  • Russell, A. R., & Khalili, N. (2006). A unified bounding surface plasticity model for unsaturated soils. International Journal for Numerical and Analytical Methods in Geomechanics, 30(3), 181–212. https://doi.org/10.1002/nag.475
  • Seed, H. B., & Idriss, I. M. (1982). Ground motion and soil liquefaction during earthquake. University of California.
  • Seed, H. B., & Lee, K. L. (1966). Liquefaction of saturated sands during cyclic loading. Journal of the Soil Mechanics and Foundations Division, 92(6), 105–134. https://doi.org/10.1061/JSFEAQ.0000913
  • Seed, H. B., Martin, P. P., & Lysmer, J. (1975). The generation and dissipation of prore pressure during soil liquefaction. CB/EERC-75/26, Earthquake Engineering Research Center.
  • Skempton, A. W. (1954). The pore-pressure coefficients A and B. Géotechnique, 4(4), 143–147. https://doi.org/10.1680/geot.1954.4.4.143
  • Taibi, S., Fleureau, J. M., Hadiwardoyo, Souli, H., & Correia, G. (2011). The concept of effective stress in unsaturated soils. In P. Y. Hicher (Ed.), Multiscale geomechanics; from soil to engineering projects, 416pp. ISTE Sci-Tech Publisher. WILEY. Chapter 6.
  • Tran, K. H., Imanzadeh, S., Taibi, S., & Dao, D. L. (2019). Liquefaction behaviour of dense sand relating to the degree of saturation [Paper presentation]. The 4th International Conference on Geotechnics for Sustainable Infrastructure Development (GEOTEC Hanoi), Hanoi - Vietnam.
  • Tran, K. H., Imanzadeh, S., Taibi, S., Souli, H., Fleureau, J. M., & Hattab, M. (2021). Effect of saturation on liquefaction potential and residual strength: Laboratory investigation. European Journal of Environmental and Civil Engineering, 1–23. https://www.tandfonline.com/doi/full/101080/19648189.2021.1999333 https://doi.org/10.1080/19648189.2021.1999333
  • Tsukamoto, Y. (2019). Degree of saturation affecting liquefaction resistance and undrained shear strength of silty sands. Soil Dynamics and Earthquake Engineering, 124, 365–373. https://doi.org/10.1016/j.soildyn.2018.04.041
  • Tsukamoto, Y., Kawabe, S., Matsumoto, J., & Hagiwara, S. (2014). Cyclic resistance of two unsaturated silty sands against soil liquefaction. Soils and Foundations, 54(6), 1094–1103. https://doi.org/10.1016/j.sandf.2014.11.005
  • Unno, T., Kazama, M., Uzuoka, R., & Sento, N. (2008, February). Liquefaction of unsaturated sand considering the pore air pressure and volume compressibility of the soil particle skeleton. Soils and Foundations, 48(1), 87–99. https://doi.org/10.3208/sandf.48.87
  • Vercueil, D., Billet, P., & Cordary, D. (1997). Study of the liquefaction resistance of a saturated sand reinforced with geosynthetics. Soil Dynamics and Earthquake Engineering, 16(7–8), 417–425. https://doi.org/10.1016/S0267-7261(97)00018-3
  • Vernay, M., Morvan, M., & Breul, P. (2020). Experimental study on the influence of saturation degree on unstable behavior within granular material. European Journal of Environmental and Civil Engineering, 24(11), 1821–1839. https://doi.org/10.1080/19648189.2018.1488623
  • Wang, H., Koseki, J., Sato, T., Chiaro, G., & Tan-Tian, J. (2016). Effect of saturation on liquefaction resistance of iron ore fines and sandy soils. Soils and Foundations, 56(4), 732–744. https://doi.org/10.1016/j.sandf.2016.07.013
  • Wang, S., Luna, R., & Onyejekwe, S. (2015). Postliquefaction behavior of low-plasticity silt at various degrees of reconsolidation. Soil Dynamics and Earthquake Engineering, 75, 259–264. https://doi.org/10.1016/j.soildyn.2015.04.014
  • Xia, H., & Hu, T. (1991). Effects of saturation and back pressure on sand liquefaction. J Geotech Eng, 117(9), 1347–1362. https://doi.org/10.1061/(ASCE)0733-9410(1991)117:9(1347)
  • Yang, J., Savidis, S., & Roemer, M. (2004). Evaluating liquefaction strength of partially saturated sand. Journal of Geotechnical and Geoenvironmental Engineering, 130(9), 975–979. https://doi.org/10.1061/(ASCE)1090-0241(2004)130:9(975)
  • Ye, B., Xie, X., Zhao, T., Song, S., Ma, Z., Feng, X., Zou, J., & Wang, H. (2020). Centrifuge Tests of Macroscopic and Mesoscopic Investigation into Effects of Seismic Histories on Sand Liquefaction Resistance. Journal of Earthquake Engineering, 1–23. https://doi.org/10.1080/13632469.2020.1826373
  • Yoshimi, Y., Tanaka, K., & Tokimatsu, K. (1989). Liquefaction resistance of partially saturated sand. Soils Found, 29(3), 157–162. https://doi.org/10.3208/sandf1972.29.3_157
  • Zeybek, A., & Madabhushi, S. P. G. (2017). Centrifuge testing to evaluate the liquefaction response of air-injected partially saturated soils beneath shallow foundations. Bulletin of Earthquake Engineering, 15(1), 339–356. https://doi.org/10.1007/s10518-016-9968-6

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.