527
Views
2
CrossRef citations to date
0
Altmetric
Original Articles

Effects of natural zeolite and sulfate environment on mechanical properties and permeability of cement–bentonite cutoff wall

&
Pages 1165-1178 | Received 16 Aug 2021, Accepted 05 May 2022, Published online: 18 May 2022

References

  • Ahmad, S., Barbhuiya, S. A., Elahi, A., & Iqbal, J. (2011). Effect of Pakistani bentonite on properties of mortar and concrete. Clay Minerals, 46(1), 85–92. https://doi.org/10.1180/claymin.2011.046.1.85
  • Akbarpour, A., Mahdikhani, M., & Moayed, R. Z. (2022a). Effects of natural zeolite and sulfate ions on the mechanical properties and microstructure of plastic concrete. Frontiers of Structural & Civil Engineering, 16(1), 86–98. https://doi.org/10.1007/s11709-021-0793-x
  • Akbarpour, A., Mahdikhani, M., & Ziaie Moayed, R. (2022b). Mechanical behavior and permeability of plastic concrete containing natural zeolite under triaxial and uniaxial compression. Journal of Materials in Civil Engineering, 34(2), 04021453. https://doi.org/10.1061/(ASCE)MT.1943-5533.0004093
  • ASTM/C143M-15a ASTM (2009). International standard test method for slump of hydraulic cement concrete (C 143); pp. 99–101.
  • ASTM C348-20 (1999). Standard test method for flexural strength of hydraulic–cement mortars. Annual B: ASTM Standards, 03, 98–100. https://doi.org/10.1520/C0348-14.2
  • C109/109M-16a, A (2016). Standard test method for compressive strength of hydraulic cement mortars (Using 2-in. or cube specimens). Annual B: ASTM Standards, 1, 1–10. https://doi.org/10.1520/C0109
  • CRD C. 163-92 (1992). Test method for water permeability of concrete using triaxial cell. US Army corps Eng. Stand.
  • Du, Y. J., Fan, R. D., Liu, S. Y., Reddy, K. R., & Jin, F. (2015). Workability, compressibility and hydraulic conductivity of zeolite-amended clayey soil/calcium–bentonite backfills for slurry–trench cutoff walls. Engineering Geology, 195, 258–268. https://doi.org/10.1016/j.enggeo.2015.06.020
  • Erdem, E., Karapinar, N., & Donat, R. (2004). The removal of heavy metal cations by natural zeolites. Journal of Colloid & Interface Science, 280(2), 309–314. https://doi.org/10.1016/j.jcis.2004.08.028
  • Evans, J., Prince, M., & Adams, T. (1997). Metals attenuation in minerally-enhanced slurry walls. (No. CONF-970208-Proc.). US Department of Energy (USDOE), Washington DC (United States).
  • Franco, D. d B., Steiner, M. T. A., & Assef, F. M. (2021). Optimization in waste landfilling partitioning in Paraná State, Brazil. Journal of Cleaner Production, 283, 125353. https://doi.org/10.1016/j.jclepro.2020.125353
  • Fratalocchi, E., Pasqualini, E., & Balboni, P. (2006). Performance of a cement–bentonite cut-off wall in an acidic sulphate environment. Proc. ISSMGE 5th Int. Congr. I 5th ICEG Environ. Geotech. Oppor. Challenges Responsible Environ. Geotech., 133–139.
  • Garvin, S. L., & Hayles, C. S. (1999). Chemical compatibility of cement–bentonite cut-off wall material. Construction & Building Materials, 13(6), 329–341. https://doi.org/10.1016/S0950-0618(99)00024-0
  • Grim, R. E. (1962). Clay mineralogy: The clay mineral composition of soils and clays is providing an understanding of their properties. Science (New York, NY), 135(3507), 890–898. https://doi.org/10.1126/science.135.3507.890
  • Guo, Z., Zhang, J., Jiang, T., Jiang, T., Chen, C., Bo, R., & Sun, Y. (2020). Development of sustainable self-compacting concrete using recycled concrete aggregate and fly ash, slag, silica fume. European Journal of Environmental & Civil Engineering, 0, 1–22. https://doi.org/10.1080/19648189.2020.1715847
  • Hong, C. S., Shackelford, C. D., & Malusis, M. A. (2012). Consolidation and hydraulic conductivity of zeolite-amended soil–bentonite backfills. Journal of Geotechnical & Geoenvironmental Engineering, 138(1), 15–25. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000566
  • Hoque, M. M., & Rahman, M. T. U. (2020). Landfill area estimation based on solid waste collection prediction using ANN model and final waste disposal options. Journal of Cleaner Production, 256, 120387. https://doi.org/10.1016/j.jclepro.2020.120387
  • Huang, X., Li, J., Xue, Q., Chen, Z., Du, Y., Wan, Y., Liu, L., & Poon, C. S. (2021). Use of self-hardening slurry for trench cutoff wall: A review. Construction & Building Materials, 286, 122959. https://doi.org/10.1016/j.conbuildmat.2021.122959
  • Inglezakis, V. J. (2005). The concept of “capacity” in zeolite ion-exchange systems. Journal of Colloid & Interface Science, 281(1), 68–79. https://doi.org/10.1016/j.jcis.2004.08.082
  • Janotka, I., & Krajči, L. (2008). Sulphate resistance and passivation ability of the mortar made from pozzolan cement with zeolite. Journal of Thermal Analysis & Calorimetry, 94(1), 7–14. https://doi.org/10.1007/s10973-008-9180-2
  • Jefferis, S. (2012). Cement–bentonite slurry systems. 1–24. https://doi.org/10.1061/9780784412350.0001
  • Kaya, A., & Durukan, S. (2004). Utilization of bentonite-embedded zeolite as clay liner. Applied Clay Science, 25(1–2), 83–91. https://doi.org/10.1016/j.clay.2003.07.002
  • Kayabali, K. (1997). Engineering aspects of a novel landfill liner material: Bentonite-amended natural zeolite. Engineering Geology, 46(2), 105–114. https://doi.org/10.1016/S0013-7952(96)00102-0
  • Kaza, S., & Bhada-Tata, P. (2018). Decision maker’s guides for solid waste management technologies. Decision Maker’s Guides for Solid Waste Management Technologies; https://doi.org/10.1596/31694  Urban Development Series Knowledge Papers;. World Bank, Washington, DC. https://openknowledge.worldbank.org/handle/10986/31694
  • Keramatikerman, M., Chegenizadeh, A., & Nikraz, H. (2017). An investigation into effect of sawdust treatment on permeability and compressibility of soil–bentonite slurry cut-off wall. Journal of Cleaner Production, 162, 1–6. https://doi.org/10.1016/j.jclepro.2017.05.160
  • Liu, K., Sun, D., Wang, A., Zhang, G., & Tang, J. (2018). Long-term performance of blended cement paste containing fly ash against sodium sulfate attack. Journal of Materials in Civil Engineering, 30(12), 04018309. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002516
  • Malusis, M. A., Barben, E. J., & Evans, J. C. (2009). Hydraulic conductivity and compressibility of soil–bentonite backfill amended with activated carbon. Journal of Geotechnical & Geoenvironmental Engineering, 135(5), 664–672. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000041
  • Malusis, M. A., Maneval, J. E., Barben, E. J., Shackelford, C. D., & Daniels, E. R. (2010). Influence of adsorption on phenol transport through soil–bentonite vertical barriers amended with activated carbon. Journal of Contaminant Hydrology, 116(1–4), 58–72. https://doi.org/10.1016/j.jconhyd.2010.06.001
  • Mehta, P. K., & Monteiro, P. J. (2014). Concrete: microstructure, properties, and materials. McGraw-Hill Education.
  • Neville, A. (2004). The confused world of sulfate attack on concrete. Cement & Concrete Research, 34(8), 1275–1296. https://doi.org/10.1016/j.cemconres.2004.04.004
  • Pezeshkian, M., Delnavaz, A., & Delnavaz, M. (2019). Development of UHPC mixtures using natural zeolite and glass sand as replacements of silica fume and quartz sand. European Journal of Environmental & Civil Engineering, 0, 1–16. https://doi.org/10.1080/19648189.2019.1610074
  • Philip, L. K. (2001). An investigation into contaminant transport processes through single-phase cement-bentonite slurry walls. Engineering Geology, 60(1–4), 209–221. https://doi.org/10.1016/S0013-7952(00)00102-2
  • Poon, C. S., Lam, L., Kou, S. C., & Lin, Z. S. (1999). A study on the hydration rate of natural zeolite blended cement pastes. Construction & Building Materials, 13(8), 427–432. https://doi.org/10.1016/S0950-0618(99)00048-3
  • Quan, X., Wang, S., Liu, K., Zhao, N., Xu, J., Xu, F., & Zhou, J. (2021). The corrosion resistance of engineered cementitious composite (ECC) containing high-volume fly ash and low-volume bentonite against the combined action of sulfate attack and dry-wet cycles. Construction & Building Materials, 303, 124599. https://doi.org/10.1016/j.conbuildmat.2021.124599
  • Rahhal, V. F., Pavlík, Z., Tironi, A., Castellano, C. C., Trezza, M. A., Černý, R., & Irassar, E. F. (2017). Effect of cement composition on the early hydration of blended cements with natural zeolite. Journal of Thermal Analysis & Calorimetry, 128(2), 721–733. https://doi.org/10.1007/s10973-016-6007-4
  • Ramezanianpour, A. A., Ghiasvand, E., Nickseresht, I., Mahdikhani, M., & Moodi, F. (2009). Influence of various amounts of limestone powder on performance of Portland limestone cement concretes. Cement & Concrete Composites, 31(10), 715–720. https://doi.org/10.1016/j.cemconcomp.2009.08.003
  • Ramezanianpour, A. A., Kazemian, A., Sarvari, M., & Ahmadi, B. (2013). Use of natural zeolite to produce self-consolidating concrete with low portland cement content and high durability. Journal of Materials in Civil Engineering, 25(5), 589–596. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000621
  • Royal, A. C. D., Makhover, Y., Moshirian, S., & Hesami, D. (2013). Investigation of cement–bentonite slurry samples containing PFA in the UCS and triaxial apparatus. Geotechnical & Geological Engineering, 31(2), 767–781. https://doi.org/10.1007/s10706-013-9626-6
  • Uzal, B., & Turanli, L. (2012). Blended cements containing high volume of natural zeolites: Properties, hydration and paste microstructure. Cement & Concrete Composites, 34(1), 101–109. https://doi.org/10.1016/j.cemconcomp.2011.08.009
  • Weitkamp, J. (1989). An introduction to zeolite molecular sieves. Applied Catalysis, 52(3), N25–N26. https://doi.org/10.1016/S0166-9834(00)80817-9
  • Wu, J., Wei, J., Huang, H., Hu, J., & Yu, Q. (2020). Effect of multiple ions on the degradation in concrete subjected to sulfate attack. Construction & Building Materials, 259, 119846. https://doi.org/10.1016/j.conbuildmat.2020.119846
  • Zhang, Z., Zhou, J., Yang, J., Zou, Y., & Wang, Z. (2020). Understanding of the deterioration characteristic of concrete exposed to external sulfate attack: Insight into mesoscopic pore structures. Construction & Building Materials, 260, 119932. https://doi.org/10.1016/j.conbuildmat.2020.119932
  • Zou, D., Qin, S., Liu, T., & Jivkov, A. (2021). Experimental and numerical study of the effects of solution concentration and temperature on concrete under external sulfate attack. Cement & Concrete Research, 139, 106284. https://doi.org/10.1016/j.cemconres.2020.106284

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.