79
Views
0
CrossRef citations to date
0
Altmetric
Original Articles

Static and dynamic moduli of elasticity and drying shrinkage behavior of concrete containing multi-walled carbon nanotubes

, , &
Pages 1209-1223 | Received 28 Aug 2021, Accepted 10 May 2022, Published online: 27 May 2022

References

  • ACI (2014). ACI 318-14 Building Code Requirements for Structural Concrete, ACI Committee 318. American Concrete Institute.
  • Adhikary, S. K., Rudžionis, Ž., & Rajapriya, R. (2020). The effect of carbon nanotubes on the flowability, mechanical, microstructural and durability properties of cementitious composite: An overview. Sustainability, 12(20), 8362. https://doi.org/10.3390/su12208362
  • Ahmadi Moghadam, H., Neshaei, S. A., Mirhosseini, S. M., & Hassani Joshaghani, A. (2022). Durability characteristics and mechanical properties of multi-walled carbon nanotubes reinforced concrete, a case study: Caspian seawater curing condition. European Journal of Environmental & Civil Engineering, 1–19. https://doi.org/10.1080/19648189.2022.2031303
  • ASTM C143/C143M-15a (2015). Standard test method for slump of hydraulic–cement concrete. ASTM International. https://doi.org/10.1520/C0143_C0143M-15A
  • ASTM C150/C150M-16 (2016). Standard specification for portland cement. ASTM International. https://doi.org/10.1520/C0150_C0150M-16E01
  • ASTM C192/C192M-16a (2016). Standard practice for making and curing concrete test specimens in the laboratory. ASTM International. https://doi.org/10.1520/C0192_C0192M-16A
  • ASTM C33/C33M-16 (2016)., Standard specification for concrete aggregates. ASTM International. https://doi.org/10.1520/C0033_C0033M-16
  • ASTM C341/C341M-13 (2013). Standard practice for preparation and conditioning of cast, drilled, or sawed specimens of hydraulic-cement mortar and concrete used for length change measurements. ASTM International. https://doi.org/10.1520/C0341_C0341M-13
  • ASTM C469/C469M-14 (2014). Standard test method for static modulus of elasticity and Poisson’s ratio of concrete in compression. ASTM International. https://doi.org/10.1520/C0469_C0469M-14
  • ASTM C511-13 (2013). Standard specification for mixing rooms, moist cabinets, moist rooms, and water storage tanks used in the testing of hydraulic cements and concretes. ASTM International. https://doi.org/10.1520/C0511-13
  • ASTM D2845-08 (2008). Standard test method for laboratory determination of pulse velocities and ultrasonic elastic constants of rock. ASTM International. https://doi.org/10.1520/D2845-00
  • BS EN 1992-1-1 (2004). Eurocode 2: Design of concrete structures – Part 1-1: General rules and rules for buildings. European Committee for standardization CEN.
  • Carriço, A., Bogas, J. A., Hawreen, A., & Guedes, M. (2018). Durability of multi-walled carbon nanotube reinforced concrete. Construction & Building Materials, 164, 121–133. https://doi.org/10.1016/j.conbuildmat.2017.12.221
  • Cwirzen, A., Habermehl-Cwirzen, K., & Penttala, V. (2008). Surface decoration of carbon nanotubes and mechanical properties of cement/carbon nanotube composites. Advances in Cement Research, 20(2), 65–73. https://doi.org/10.1680/adcr.2008.20.2.65
  • Danoglidis, P. A., Konsta-Gdoutos, M. S., Gdoutos, E. E., & Shah, S. P. (2016). Strength, energy absorption capability and self-sensing properties of multifunctional carbon nanotube reinforced mortars. Construction & Building Materials, 120, 265–274. https://doi.org/10.1016/j.conbuildmat.2016.05.049
  • fib (CEB-FIP). (1999). Structural concrete, the textbook on behaviour, design and performance, FIB Bulletins (Vol. 1). International Federation for Structural Concrete (fib). https://doi.org/10.35789/fib.BULL.0001
  • Hawreen, A., & Bogas, J. A. (2019). Creep, shrinkage and mechanical properties of concrete reinforced with different types of carbon nanotubes. Construction & Building Materials, 198, 70–81. https://doi.org/10.1016/j.conbuildmat.2018.11.253
  • Hawreen, A., Bogas, J. A., & Dias, A. P. S. (2018). On the mechanical and shrinkage behavior of cement mortars reinforced with carbon nanotubes. Construction & Building Materials, 168, 459–470. https://doi.org/10.1016/j.conbuildmat.2018.02.146
  • Hawreen, A., Bogas, J. A., & Kurda, R. (2019). Mechanical characterization of concrete reinforced with different types of carbon nanotubes. Arabian Journal for Science & Engineering, 44(10), 8361–8376. https://doi.org/10.1007/s13369-019-04096-y
  • Iravani, S. (1996). Mechanical properties of high-performance concrete. ACI Materials Journal, 93(5), 416–426.
  • Konsta-Gdoutos, M. S., Danoglidis, P. A., Falara, M. G., & Nitodas, S. F. (2017). Fresh and mechanical properties, and strain sensing of nanomodified cement mortars: The effects of MWCNT aspect ratio, density and functionalization. Cement & Concrete Composites, 82, 137–151. https://doi.org/10.1016/j.cemconcomp.2017.05.004
  • Konsta-Gdoutos, M. S., Metaxa, Z. S., & Shah, S. P. (2010). Highly dispersed carbon nanotube reinforced cement based materials. Cement & Concrete Research, 40(7), 1052–1059. https://doi.org/10.1016/j.cemconres.2010.02.015
  • Konsta-Gdoutos, M. S., Metaxa, Z. S., & Shah, S. P. (2010). Multi-scale mechanical and fracture characteristics and early-age strain capacity of high performance carbon nanotube/cement nanocomposites. Cement & Concrete Composites, 32(2), 110–115. https://doi.org/10.1016/j.cemconcomp.2009.10.007
  • Kováčik, J., & Emmer, Š. (2013). Correlation between shear wave velocity and porosity in porous solids and rocks. Journal of Powder Technology, 2013, 1–3. https://doi.org/10.1155/2013/643167
  • Leonavičius, D., Pundienė, I., Girskas, G., Pranckevičienė, J., Kligys, M., & Kairytė, A. (2018). The effect of multi-walled carbon nanotubes on the rheological properties and hydration process of cement pastes. Construction & Building Materials, 189, 947–954. https://doi.org/10.1016/j.conbuildmat.2018.09.082
  • Li, G. Y., Wang, P. M., & Zhao, X. (2005). Mechanical behavior and microstructure of cement composites incorporating surface-treated multi-walled carbon nanotubes. Carbon, 43(6), 1239–1245. https://doi.org/10.1016/j.carbon.2004.12.017
  • Li, G. Y., Wang, P. M., & Zhao, X. (2007). Pressure-sensitive properties and microstructure of carbon nanotube reinforced cement composites. Cement & Concrete Composites, 29(5), 377–382. https://doi.org/10.1016/j.cemconcomp.2006.12.011
  • Li, W. W., Ji, W. M., Wang, Y. C., Liu, Y., Shen, R. X., & Xing, F. (2015). Investigation on the mechanical properties of a cement-based material containing carbon nanotube under drying and freeze-thaw conditions. Materials (Basel, Switzerland), 8(12), 8780–8792. https://doi.org/10.3390/ma8125491
  • Lu, L., Ouyang, D., & Xu, W. (2016). Mechanical properties and durability of ultra high strength concrete incorporating multi-walled carbon nanotubes. Materials, 9(6), 419. https://doi.org/10.3390/ma9060419
  • Mendoza, O., Sierra, G., & Tobón, J. I. (2013). Influence of super plasticizer and Ca(OH)2 on the stability of functionalized multi-walled carbon nanotubes dispersions for cement composites applications. Construction & Building Materials, 47, 771–778. https://doi.org/10.1016/j.conbuildmat.2013.05.100
  • Norwegian Standard, NS 3473.E (2003). Design of concrete structures, design and detailing rules, 6th edition. Norwegian Association of Standardization.
  • Phani, K. K., & Niyogi, S. K. (1987). Young's modulus of porous brittle solids. Journal of Materials Science, 22(1), 257–263. https://doi.org/10.1007/BF01160581
  • Popovics, J. S., Zemajtis, J., & Shkolnik, I. (2008). A study of static and dynamic modulus of elasticity of concrete. ACI-CRC Final Report. American Concrete Institute.
  • Rashid, M. A., Mansur, M. A., & Paramasivam, P. (2002). Correlations between mechanical properties of high-strength concrete. Journal of Materials in Civil Engineering, 14(3), 230–238. https://doi.org/10.1061/(ASCE)0899-1561(2002)14:3(230)
  • Rhee, I., & Roh, Y.-S. (2013). Properties of normal-strength concrete and mortar with multi-walled carbon nanotubes. Magazine of Concrete Research, 65(16), 951–961. https://doi.org/10.1680/macr.12.00212
  • Sáez de Ibarra, Y., Gaitero, J. J., Erkizia, E., & Campillo, I. (2006). Atomic force microscopy and nanoindentation of cement pastes with nanotube dispersions. Physica Status Solidi (a), 203(6), 1076–1081. https://doi.org/10.1002/pssa.200566166
  • Sarıdemir, M. (2013). Effect of silica fume and ground pumice on compressive strength and modulus of elasticity of high strength concrete. Construction & Building Materials, 49, 484–489. https://doi.org/10.1016/j.conbuildmat.2013.08.091
  • Tragazikis, I. K., Dassios, K. G., Exarchos, D. A., Dalla, P. T., & Matikas, T. E. (2016). Acoustic emission investigation of the mechanical performance of carbon nanotube-modified cement-based mortars. Construction & Building Materials, 122, 518–524. https://doi.org/10.1016/j.conbuildmat.2016.06.095
  • Zou, B., Chen, S. J., Korayem, A. H., Collins, F., Wang, C. M., & Duan, W. H. (2015). Effect of ultrasonication energy on engineering properties of carbon nanotube reinforced cement pastes. Carbon, 85, 212–220. https://doi.org/10.1016/j.carbon.2014.12.094

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.