265
Views
1
CrossRef citations to date
0
Altmetric
Original Articles

Bio-fiber reinforced roller compacted concrete designed for road construction: feasibility of date palm fibers in pavements

, ORCID Icon, , , , , & show all
Pages 1224-1246 | Received 04 Sep 2021, Accepted 10 May 2022, Published online: 19 May 2022

References

  • ACI.325.10-95 (2001). Report on roller-compacted concrete pavements reported by American Concrete Institute ACI Committee. 325 2001.
  • Ahmadi, M., Shafabakhsh, G. A., & Hassani, A. (2021). Fracture and mechanical performance of two-lift concrete pavements made of roller compacted concrete and polypropylene fibers. Construction & Building Materials, 268, 121144. https://doi.org/10.1016/j.conbuildmat.2020.121144
  • Ahmed, S. A. (2013). Properties and mesostructural characteristics of linen fiber reinforced self-compacting concrete in slender columns. Ain Shams Engineering Journal, 4(2), 155–161. https://doi.org/10.1016/j.asej.2012.08.006
  • ASTM-C597 (2016). Standard test method for pulse velocity through concrete.
  • ASTM-C1435-99. (1999). Standard practice for molding roller-compacted concrete in cylinder molds using a vibrating hammer.
  • ASTM-C1747 (2013). Standard test method for determining potential resistance to degradation of pervious concrete by impact and abrasion.
  • ASTM-D1557 (2012). Standard test methods for laboratory compaction characteristics of soil using modified effort.
  • Awal, A. A., & Mohammadhosseini, H. (2016). Green concrete production incorporating waste carpet fiber and palm oil fuel ash. Journal of Cleaner Production, 137, 157–166. https://doi.org/10.1016/j.jclepro.2016.06.162
  • Awwad, E., Mabsout, M., Hamad, B., Farran, M. T., & Khatib, H. (2012). Studies on fiber-reinforced concrete using industrial hemp fibers. Construction & Building Materials, 35, 710–717. https://doi.org/10.1016/j.conbuildmat.2012.04.119
  • Belkadi, A. A., Aggoun, S., Amouri, C., Geuttala, A., & Houari, H. (2018). Effect of vegetable and synthetic fibers on mechanical performance and durability of Metakaolin-based mortars. Journal of Adhesion Science & Technology, 32(15), 1670–1686. https://doi.org/10.1080/01694243.2018.1442647
  • Benaniba, S., Djendel, M., Boubaaya, R., Raouache, E., Kessal, O., & Driss, Z. (2021). Experimental investigation on thermomechanical properties of bio-composites reinforced with two lengths of the date palm fibers. Journal of Natural Fibers, 1–17. https://doi.org/10.1080/15440478.2021.1993490
  • Benouadah, A., Beddar, M., & Meddah, A. (2017). Physical and mechanical behaviour of a roller compacted concrete reinforced with polypropylene fiber. Journal of Fundamental & Applied Sciences, 9(2), 623–635. https://doi.org/10.4314/jfas.v9i2.1
  • Chhorn, C., Hong, S. J., & Lee, S.-W. (2017). A study on performance of roller-compacted concrete for pavement. Construction & Building Materials, 153, 535–543. https://doi.org/10.1016/j.conbuildmat.2017.07.135
  • Chiker, T., Belkadi, A. A., & Aggoun, S. (2021). Physico-chemical and microstructural fire-induced alterations into metakaolin-based vegetable and polypropylene fibred mortars. Construction & Building Materials, 276, 122225. https://doi.org/10.1016/j.conbuildmat.2020.122225
  • Dean, A., Voss, D., & Draguljić, D. (1999). Design and analysis of experiments (Vol. 1): Springer.
  • Denzin Tonoli, G. H., de Souza Almeida, A. E. F., Pereira-da-Silva, M. A., Bassa, A., Oyakawa, D., & Savastano, H. Jr. (2010). Surface properties of eucalyptus pulp fibres as reinforcement of cement-based composites.
  • Di Bella, G., Fiore, V., Galtieri, G., Borsellino, C., & Valenza, A. (2014). Effects of natural fibres reinforcement in lime plasters (kenaf and sisal vs. polypropylene). Construction & Building Materials, 58, 159–165. https://doi.org/10.1016/j.conbuildmat.2014.02.026
  • Dong-Hyun, C.-G, &., & Kim, P. (2013). Permeability, abrasion, and impact resistance of latex-modified fibre reinforced concrete for precast concrete pavement applications. Progress in Rubber Plastics & Recycling Technology, 29(4), 239–254.
  • Dridi, M., Hachemi, S., & Belkadi, A. A. (2022). Influence of styrene-butadiene rubber and pretreated hemp fibers on the properties of cement-based repair mortars. European Journal of Environmental & Civil Engineering, 1–20. https://doi.org/10.1080/19648189.2022.2052968
  • EN.197–1 (2000). Cement-Part 1: Composition, specifications and conformity criteria for common cements.
  • EN.NF12390-3 (2019). Essais pour béton durci—Partie 3: Résistance à la compression des éprouvettes—Essais pour béton durci—Partie 3: Résistance à la compression des éprouvettes.
  • Fakoor, M., & Nematzadeh, M. (2021). Evaluation of post-fire pull-out behavior of steel rebars in high-strength concrete containing waste PET and steel fibers: Experimental and theoretical study. Construction & Building Materials, 299, 123917. https://doi.org/10.1016/j.conbuildmat.2021.123917
  • Fang, X., Jing, Z., Shao-Qin, R., Ming-Kai, Z., & Jian-Ping, C. (2013). Mechanical analysis of RCC-PCC composite pavement subjected to traffic load. Electronic Journal of Geotechnical Engineering, 18(Bundle N), 3351–3363.
  • Ferrebee, E. C., Brand, A. S., Kachwalla, A. S., Roesler, J. R., Gancarz, D. J., & Pforr, J. E. (2014). Fracture properties of roller-compacted concrete with virgin and recycled aggregates. Transportation Research Record: Journal of the Transportation Research Board, 2441(1), 128–134. https://doi.org/10.3141/2441-17
  • Foy, C., Pigeon, M., & Banthia, N. (1988). Freeze–thaw durability and deicer salt scaling resistance of a 0, 25 water–cement ratio concrete. Cement Concrete Research, 18(4), 604–614. https://doi.org/10.1016/0008-8846(88)90053-1
  • García, A., Castro-Fresno, D., Polanco, J., & Thomas, C. (2012). Abrasive wear evolution in concrete pavements. Road Materials & Pavement Design, 13(3), 534–548. https://doi.org/10.1080/14680629.2012.694094
  • Gauthier, P., & Marchand, J. (2004). Conception et réalisation de revêtements en béton compacté au rouleau au Québec. Association Béton, Québec (ABQ) Québec, 63–87.
  • Goupy, J., & Creighton, L. (2007). Introduction to design of experiments with JMP examples. SAS Publishing.
  • Graeff, A. G., Pilakoutas, K., Neocleous, K., & Peres, M. V. N. (2012). Fatigue resistance and cracking mechanism of concrete pavements reinforced with recycled steel fibres recovered from post-consumer tyres. Engineering Structures, 45, 385–395. https://doi.org/10.1016/j.engstruct.2012.06.030
  • Gupta, A., Rodriguez-Hernandez, J., & Castro-Fresno, D. (2019). Incorporation of additives and fibers in porous asphalt mixtures: A review. Materials, 12(19), 3156. https://doi.org/10.3390/ma12193156
  • Harrington, D., Abdo, F., Adaska, W., Hazaree, C. V., Ceylan, H., & Bektas, F. (2010). Guide for roller-compacted concrete pavements. InTrans Project Reports, 102.
  • Hesami, S., Modarres, A., Soltaninejad, M., & Madani, H. (2016). Mechanical properties of roller compacted concrete pavement containing coal waste and limestone powder as partial replacements of cement. Construction & Building Materials, 111, 625–636. https://doi.org/10.1016/j.conbuildmat.2016.02.116
  • Howes, R., Hadi, M. N., & South, W. (2019). Concrete strength reduction due to over compaction. Construction & Building Materials, 197, 725–733. https://doi.org/10.1016/j.conbuildmat.2018.11.234
  • Jahanbakhsh, P., Saberi, K., Soltaninejad, M., Hashemi., & S. H. F. (2022). Laboratory investigation of modified roller compacted concrete pavement (RCCP) containing macro synthetic fibers. International Journal of Pavement Research & Technology, 1–15.
  • Karadelis, J. N., & Lin, Y. (2015). Flexural strengths and fibre efficiency of steel-fibre-reinforced, roller-compacted, polymer modified concrete. Construction & Building Materials, 93, 498–505. https://doi.org/10.1016/j.conbuildmat.2015.04.059
  • Kim, D. H., & Park, C. G. (2013). Strength, permeability, and durability of hybrid fiber‐reinforced concrete containing styrene butadiene latex. Journal of Applied Polymer Science, 129(3), 1499–1505. https://doi.org/10.1002/app.38861
  • Kriker, A., Debicki, G., Bali, A., Khenfer, M., & Chabannet, M. (2005). Mechanical properties of date palm fibres and concrete reinforced with date palm fibres in hot-dry climate. Cement & Concrete Composites, 27(5), 554–564. https://doi.org/10.1016/j.cemconcomp.2004.09.015
  • Lawson, J. (2014). Design and analysis of experiments with R (Vol. 115). CRC Press.
  • Lee, S.-K., Jeon, M.-J., Cha, S.-S., & Park, C.-G. (2017). Mechanical and permeability characteristics of latex-modified fiber-reinforced roller-compacted rapid-hardening-cement concrete for pavement repair. Applied Sciences, 7(7), 694. https://doi.org/10.3390/app7070694
  • Li, S., Chen, G., Ji, G., & Lu, Y. (2014). Quantitative damage evaluation of concrete suffered freezing–thawing by DIP technique. Construction & Building Materials, 69, 177–185. https://doi.org/10.1016/j.conbuildmat.2014.07.072
  • Liu, D., Li, Z., & Liu, J. (2015). Experimental study on real-time control of roller compacted concrete dam compaction quality using unit compaction energy indices. Construction & Building Materials, 96, 567–575. https://doi.org/10.1016/j.conbuildmat.2015.08.048
  • Karakoç, M. B., Demirboğa, R., Türkmen, İ., & Can, İ, R. D. a., I Türkmen, _I Can (2011). Modeling with ANN and effect of pumice aggregate and air entrainment on the freeze–thaw durabilities of HSC. Construction & Building Materials, 25(11), 4241–4249. https://doi.org/10.1016/j.conbuildmat.2011.04.068
  • Mehta, P. K. (1999). Concrete technology for sustainable development. Concrete International, 21(11), 47–53.
  • Mo, K. H., Yeoh, K. H., Bashar, I. I., Alengaram, U. J., & Jumaat, M. Z. (2017). Shear behaviour and mechanical properties of steel fibre-reinforced cement-based and geopolymer oil palm shell lightweight aggregate concrete. Construction & Building Materials, 148, 369–375. https://doi.org/10.1016/j.conbuildmat.2017.05.017
  • Modarres, A., Hesami, S., Soltaninejad, M., & Madani, H. (2018). Application of coal waste in sustainable roller compacted concrete pavement–environmental and technical assessment. International Journal of Pavement Engineering, 19(8), 748–761. https://doi.org/10.1080/10298436.2016.1205747
  • Modarres, A., & Hosseini, Z. (2014). Mechanical properties of roller compacted concrete containing rice husk ash with original and recycled asphalt pavement material. Materials & Design, 64, 227–236. https://doi.org/10.1016/j.matdes.2014.07.072
  • Mohammed, B. S., & Adamu, M. (2018). Mechanical performance of roller compacted concrete pavement containing crumb rubber and nano silica. Construction & Building Materials, 159, 234–251. https://doi.org/10.1016/j.conbuildmat.2017.10.098
  • Nematzadeh, M., Karimi, A., & Gholampour, A. (2020). Pre-and post-heating behavior of concrete-filled steel tube stub columns containing steel fiber and tire rubber. Structures, 27, 2346–2364. https://doi.org/10.1016/j.istruc.2020.07.034
  • Nero, M. A., & Haldenbilen, S. (2020). Determining the effects of chemical admixtures on roller compacted concrete (RCC). American Journal of Engineering & Technology Management, 5(1), 27–34. https://doi.org/10.11648/j.ajetm.20200501.14
  • NF.P18-424. (2008). Bétons-Essai de gel sur béton durci-Gel dans l'eau-Dégel dans l'eau, AFNOR.
  • Nik, A. S., & Omran, O. L. (2013). Estimation of compressive strength of self-compacted concrete with fibers consisting nano-SiO2 using ultrasonic pulse velocity. Construction & Building Materials, 44, 654–662.
  • Nili, M., & Afroughsabet, V. (2010). The effects of silica fume and polypropylene fibers on the impact resistance and mechanical properties of concrete. Construction & Building Materials, 24(6), 927–933. https://doi.org/10.1016/j.conbuildmat.2009.11.025
  • Noui, A., Bouglada, M. S., Belagraa, L., Achour, Y., & Abderazak, B. (2020). Study of the mechanical behavior and durability of mortars based on prepared sand. Mining Science, 27,47-59.
  • Oh, R.-O., Kim, D.-H., & Park, C.-G. (2014). Durability performance of latex modified nylon fiber reinforced concrete for precast concrete pavement applications.
  • Olubanwo, A. O., Karadelis, J. N., Saidani, M., Khorami, M., & Abbey, S. J. (2018). Investigation of intrinsic de-bonding in bonded concrete overlays: Material characterisation and numerical study. Engineering Solid Mechanics, 6(2), 155–174.
  • Rao, S. K., Sravana, P., & Rao, T. C. (2016). Abrasion resistance and mechanical properties of roller compacted concrete with GGBS. Construction & Building Materials, 114, 925–933. https://doi.org/10.1016/j.conbuildmat.2016.04.004
  • Rith, M., Kim, Y. K., Hong, S. J., & Lee, S. W. (2017). Effect of horizontal loading on RCC-base composite pavement performance at heavy duty area. Construction & Building Materials, 131, 741–745. https://doi.org/10.1016/j.conbuildmat.2016.11.028
  • Rooholamini, H., Hassani, A., & Aliha, M. (2018). Evaluating the effect of macro-synthetic fibre on the mechanical properties of roller-compacted concrete pavement using response surface methodology. Construction & Building Materials, 159, 517–529. https://doi.org/10.1016/j.conbuildmat.2017.11.002
  • Scorza, D., Luciano, R., Mousa, S., & Vantadori, S. (2021). Fracture behaviour of hybrid fibre-reinforced roller-compacted concrete used in pavements. Construction & Building Materials, 271, 121554. https://doi.org/10.1016/j.conbuildmat.2020.121554
  • Siamardi, K., & Shabani, S. (2021). Evaluation the effect of micro-synthetic fiber on mechanical and freeze–thaw behavior of non-air-entrained roller compacted concrete pavement using response surface methodology. Construction & Building Materials, 295, 123628. https://doi.org/10.1016/j.conbuildmat.2021.123628
  • Siddique, R., Kapoor, K., Kadri, E.-H., & Bennacer, R. (2012). Effect of polyester fibres on the compressive strength and abrasion resistance of HVFA concrete. Construction & Building Materials, 29, 270–278. https://doi.org/10.1016/j.conbuildmat.2011.09.011
  • Sun, Z., & Scherer, G. W. (2010). Effect of air voids on salt scaling and internal freezing. Cement & Concrete Research, 40(2), 260–270. https://doi.org/10.1016/j.cemconres.2009.09.027
  • Tayebi, M., & Nematzadeh, M. (2021a). Effect of hot-compacted waste nylon fine aggregate on compressive stress–strain behavior of steel fiber-reinforced concrete after exposure to fire: Experiments and optimization. Construction & Building Materials, 284, 122742. https://doi.org/10.1016/j.conbuildmat.2021.122742
  • Tayebi, M., & Nematzadeh, M. (2021b). Post-fire flexural performance and microstructure of steel fiber-reinforced concrete with recycled nylon granules and zeolite substitution. Structures, 33, 2301–2316. https://doi.org/10.1016/j.istruc.2021.05.080
  • Tetsya, S., Kim, Y., Lee, S., Chon, P. J., & Han, S. (2019). Early age behavior of crack movement in RCC base of HMA-RCC composite pavement. Proceedings of the 8th CECAR, Tokyo, p, 352.
  • Tinsson, W. (2010). Plans d'expérience: Constructions et analyses statistiques (Vol. 67). Springer Science & Business Media.
  • Wei, J., & Meyer, C. (2015). Degradation mechanisms of natural fiber in the matrix of cement composites. Cement & Concrete Research, 73, 1–16. https://doi.org/10.1016/j.cemconres.2015.02.019
  • Zhang, P., Li, D., Qiao, Y., Zhang, S., Sun, C., & Zhao, T. (2018). Effect of air entrainment on the mechanical properties, chloride migration, and microstructure of ordinary concrete and fly ash concrete. Journal of Materials in Civil Engineering, 30(10), 04018265. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002456

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.