342
Views
7
CrossRef citations to date
0
Altmetric
Original Articles

Numerical study on the bearing capacity of strip footing resting on partially saturated soil subjected to combined vertical-horizontal-moment loading

, ORCID Icon, , ORCID Icon & ORCID Icon
Pages 1317-1350 | Received 31 Jan 2022, Accepted 17 May 2022, Published online: 25 Jun 2022

References

  • Anand, A., & Sarkar, R. (2020). Probabilistic investigation on bearing capacity of unsaturated fly ash. Journal of Hazardous, Toxic, and Radioactive Waste, 24(4), 06020004. https://doi.org/10.1061/(ASCE)HZ.2153-5515.0000547
  • Anand, A., & Sarkar, R. (2021). A comprehensive investigation on bearing capacity of shallow foundations on unsaturated fly ash slopes adopting finite element limit analysis. European Journal of Environmental and Civil Engineering, 25, 1–27. https://doi.org/10.1080/19648189.2021.1967200
  • Anand, A., & Sarkar, R. (2022). A comprehensive probabilistic investigation on bearing behaviour of unsaturated fly ash deposits. Arabian Journal of Geosciences, 15(4), 1–19. https://doi.org/10.1007/s12517-022-09535-z
  • Anderheggen, E., & Knöpfel, H. (1972). Finite element limit analysis using linear programming. International Journal of Solids and Structures, 8(12), 1413–1431. https://doi.org/10.1016/0020-7683(72)90088-1
  • Andersen, E. D., Roos, C., & Terlaky, T. (2003). On implementing a primal-dual interior-point method for conic quadratic optimization. Mathematical Programming, 95(2), 249–277. https://doi.org/10.1007/s10107-002-0349-3
  • Bishop, A. W. (1959). The principle of effective stress. Teknisk Ukeblad, 39, 859–863.
  • Bolton, M. D., & Lau, C. K. (1993). Vertical bearing capacity factors for circular and strip footings on Mohr–Coulomb soil. Canadian Geotechnical Journal, 30(6), 1024–1033. https://doi.org/10.1139/t93-099
  • Borja, R. I. (2004). Cam-clay plasticity. Part V: A mathematical framework for three-phase deformation and strain localization analyses of partially saturated porous media. Computer Methods in Applied Mechanics and Engineering, 193(48–51), 5301–5338. https://doi.org/10.1016/j.cma.2003.12.067
  • Buscarnera, G. (2014). Uniqueness and existence in plasticity models for unsaturated soils. Acta Geotechnica, 9(2), 313–327. https://doi.org/10.1007/s11440-013-0261-4
  • Cassidy, M. J. (2007). Experimental observations of the combined loading behaviour of circular footings on loose silica sand. Géotechnique, 57(4), 397–401. https://doi.org/10.1680/geot.2007.57.4.397
  • Chen, W. F., & Liu, X. L. (1995). Limit analysis in soil mechanics. Elsevier.
  • Chihi, O., & Saada, Z. (2022). Bearing capacity of strip footing on rock under inclined and eccentric load using the generalized Hoek-Brown criterion. European Journal of Environmental and Civil Engineering, 26(6), 2258–2272. https://doi.org/10.1080/19648189.2020.1757513
  • Cho, S. E., & Park, H. C. (2010). Effect of spatial variability of cross‐correlated soil properties on bearing capacity of strip footing. International Journal for Numerical and Analytical Methods in Geomechanics, 34(1), 1–26. https://doi.org/10.1002/nag.791
  • Coleman, J. D. (1962). Stress strain relations for partly saturated soil. Géotechnique, 12(4), 348–350. https://doi.org/10.1680/geot.1962.12.4.348
  • Dastpak, P., Abrishami, S., Sharifi, S., & Tabaroei, A. (2020). Experimental study on the behaviour of eccentrically loaded circular footing model resting on reinforced sand. Geotextiles and Geomembranes, 48(5), 647–654. https://doi.org/10.1016/j.geotexmem.2020.03.009
  • Deng, B., & Yang, M. (2019). Analysis of passive earth pressure for unsaturated retaining structures. International Journal of Geomechanics, 19(12), 06019016. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001518
  • Di Matteo, L., Valigi, D., & Ricco, R. (2013). Laboratory shear strength parameters of cohesive soils: Variability and potential effects on slope stability. Bulletin of Engineering Geology and the Environment, 72(1), 101–106. https://doi.org/10.1007/s10064-013-0459-6
  • Fathipour, H., Payan, M., & Jamshidi Chenari, R. (2021a). Limit analysis of lateral earth pressure on geosynthetic-reinforced retaining structures using finite element and second-order cone programming. Computers and Geotechnics, 134, 104119. https://doi.org/10.1016/j.compgeo.2021.104119
  • Fathipour, H., Payan, M., Jamshidi Chenari, R., & Fatahi, B. (2022). General failure envelope of eccentricity and obliquely loaded strip footings resting on an inherently anisotropic granular medium. Computers and Geotechnics, 146, 104734. https://doi.org/10.1016/j.compgeo.2022.104734
  • Fathipour, H., Payan, M., Jamshidi Chenari, R., & Senetakis, K. (2021b). Lower bound analysis of modified pseudo‐dynamic lateral earth pressures for retaining wall‐backfill system with depth‐varying damping using FEM‐Second order cone programming. International Journal for Numerical and Analytical Methods in Geomechanics, 45(16), 2371–2387. https://doi.org/10.1002/nag.3269
  • Fathipour, H., Safardoost Siahmazgi, A., Payan, M., & Jamshidi Chenari, R. (2020). Evaluation of the lateral earth pressure in unsaturated soils with finite element limit analysis using second-order cone programming. Computers and Geotechnics, 125, 103587. https://doi.org/10.1016/j.compgeo.2020.103587
  • Fathipour, H., Safardoost Siahmazgi, A., Payan, M., Veiskarami, M., & Jamshidi Chenari, R. (2021c). Limit analysis of modified pseudodynamic lateral earth pressure in anisotropic frictional medium using finite-element and second-order cone programming. International Journal of Geomechanics, 21(2), 04020258. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001924
  • Fitzgibbon, A., Pilu, M., & Fisher, R. B. (1999). Direct least square fitting of ellipses. IEEE Transactions on Pattern Analysis and Machine Intelligence, 21(5), 476–480. https://doi.org/10.1109/34.765658
  • Fredlund, D. G., & Xing, A. (1994). Equations for the soil-water characteristic curve. Canadian Geotechnical Journal, 31(4), 521–532. https://doi.org/10.1139/t94-061
  • Gardner, W. R. (1958). Some steady-state solutions of the unsaturated moisture flow equation with application to evaporation from a water table. Soil Science, 85(4), 228–232.
  • Gens, A., Sánchez, M., & Sheng, D. (2006). On constitutive modelling of unsaturated soils. Acta Geotechnica, 1(3), 137–147. https://doi.org/10.1007/s11440-006-0013-9
  • Georgiadis, K., Potts, D. M., & Zdravkovic, L. (2005). Three-dimensional constitutive model for partially and fully saturated soils. International Journal of Geomechanics, 5(3), 244–255. https://doi.org/10.1061/(ASCE)1532-3641(2005)5:3(244)
  • Ghosh, P. (2008). Upper bound solutions of bearing capacity of strip footing by pseudo-dynamic approach. Acta Geotechnica, 3(2), 115–123. https://doi.org/10.1007/s11440-008-0058-z
  • Gottardi, G., & Butterfield, R. (1993). On the bearing capacity of surface footings on sand under general planar loads. Soils and Foundations, 33(3), 68–79. https://doi.org/10.3208/sandf1972.33.3_68
  • Gottardi, G., & Butterfield, R. (1995). The displacement of a model rigid surface footing on dense sand under general planar loading. Soils and Foundations, 35(3), 71–82. https://doi.org/10.3208/sandf.35.71
  • Gourvenec, S. (2008). Effect of embedment on the undrained capacity of shallow foundations under general loading. Géotechnique, 58(3), 177–185. https://doi.org/10.1680/geot.2008.58.3.177
  • Griffiths, D. V., & Fenton, G. A. (2001). Bearing capacity of spatially random soil: the undrained clay Prandtl problem revisited. Géotechnique, 51(4), 351–359. https://doi.org/10.1680/geot.2001.51.4.351
  • Halder, K., & Chakraborty, D. (2020). Effect of inclined and eccentric loading on the bearing capacity of strip footing placed on the reinforced slope. Soils and Foundations, 60(4), 791–799. https://doi.org/10.1016/j.sandf.2020.04.006
  • Halır, R., & Flusser, J. (1998, February). Numerically stable direct least squares fitting of ellipses. In Proc. 6th International Conference in Central Europe on Computer Graphics and Visualization. WSCG (Vol. 98, pp. 125–132). Citeseer.
  • Hamlaoui, M., Oueslati, A., Lamri, B., & de Saxcé, G. (2015). Finite element analysis of the plastic limit load and the collapse mechanism of strip foundations with non-associated Drucker-Prager model. European Journal of Environmental and Civil Engineering, 19(10), 1179–1201. https://doi.org/10.1080/19648189.2015.1005162
  • Hansen, J. (1970). A revised and extended formula for bearing capacity. Danish Geotech. Institute, Bulletin, 28, 5–11.
  • Hjiaj, M., Lyamin, A. V., & Sloan, S. W. (2004). Bearing capacity of a cohesive-frictional soil under non-eccentric inclined loading. Computers and Geotechnics, 31(6), 491–516. https://doi.org/10.1016/j.compgeo.2004.06.001
  • Ho, L., & Fatahi, B. (2016). One-dimensional consolidation analysis of unsaturated soils subjected to time-dependent loading. International Journal of Geomechanics, 16(2), 04015052. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000504
  • Ho, L., & Fatahi, B. (2018). Analytical solution to axisymmetric consolidation of unsaturated soil stratum under equal strain condition incorporating smear effects. International Journal for Numerical and Analytical Methods in Geomechanics, 42(15), 1890–1913. https://doi.org/10.1002/nag.2838
  • Huang, W., Leong, E. C., & Rahardjo, H. (2018). Upper-bound limit analysis of unsaturated soil slopes under rainfall. Journal of Geotechnical and Geoenvironmental Engineering, 144(9), 04018066. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001946
  • Jahanandish, M., Habibagahi, G., & Veiskarami, M. (2010). Bearing capacity factor, N γ, for unsaturated soils by ZEL method. Acta Geotechnica, 5(3), 177–188. https://doi.org/10.1007/s11440-010-0122-3
  • Jin, L., Zhang, H., & Feng, Q. (2021a). Ultimate bearing capacity of strip footing on sands under inclined loading based on improved radial movement optimization. Engineering Optimization, 53(2), 277–299. https://doi.org/10.1080/0305215X.2020.1717483
  • Jin, L., Zhang, H., Luo, C., & Feng, Q. (2021b). The implementation of improved radial movement optimization to calculate the ultimate bearing capacity of strip footing on unsaturated soil under inclined loading. Arabian Journal of Geosciences, 14(17), 1–13. https://doi.org/10.1007/s12517-021-08090-3
  • Kasyap, S. S., & Senetakis, K. (2020). An experimental investigation on the tribological behaviour of nominally flat quartz grains with gouge material in dry, partial saturated and submersed conditions. Pure and Applied Geophysics, 177(7), 3283–3300. https://doi.org/10.1007/s00024-020-02431-1
  • Kawa, M., & Puła, W. (2020). 3D bearing capacity probabilistic analyses of footings on spatially variable c–φ soil. Acta Geotechnica, 15(6), 1453–1466. https://doi.org/10.1007/s11440-019-00853-3
  • Khalili, N., Geiser, F., & Blight, G. E. (2004). Effective stress in unsaturated soils: Review with new evidence. International Journal of Geomechanics, 4(2), 115–126. https://doi.org/10.1061/(ASCE)1532-3641(2004)4:2(115)
  • Khalili, N., & Khabbaz, M. H. (1998). A unique relationship for χ for the determination of the shear strength of unsaturated soils. Géotechnique, 48(5), 681–687. https://doi.org/10.1680/geot.1998.48.5.681
  • Khatri, V. N., Kumar, J., & Das, P. P. (2022). Bearing capacity of ring footings placed on dense sand underlain by a loose sand layer. European Journal of Environmental and Civil Engineering, 26(8), 3566–3582. https://doi.org/10.1080/19648189.2020.1805643
  • Krabbenhoft, S., Damkilde, L., & Krabbenhoft, K. (2012). Lower-bound calculations of the bearing capacity of eccentrically loaded footings in cohesionless soil. Canadian Geotechnical Journal, 49(3), 298–310. https://doi.org/10.1139/t11-103
  • Krabbenhoft, S., Damkilde, L., & Krabbenhoft, K. (2014). Bearing capacity of strip footings in cohesionless soil subject to eccentric and inclined loads. International Journal of Geomechanics, 14(3), 04014003. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000332
  • Kumar, J., & Ghosh, P. (2005). Bearing capacity factor N γ for ring footings using the method of characteristics. Canadian Geotechnical Journal, 42(5), 1474–1484. https://doi.org/10.1139/t05-051
  • Lavasan, A. A., Ghazavi, M., von Blumenthal, A., & Schanz, T. (2018). Bearing capacity of interfering strip footings. Journal of Geotechnical and Geoenvironmental Engineering, 144(3), 04018003. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001824
  • Li, Z. W., & Yang, X. L. (2018). Active earth pressure for soils with tension cracks under steady unsaturated flow conditions. Canadian Geotechnical Journal, 55(12), 1850–1859. https://doi.org/10.1139/cgj-2017-0713
  • Likos, W. J., Lu, N., & Godt, J. W. (2014). Hysteresis and uncertainty in soil water-retention curve parameters. Journal of Geotechnical and Geoenvironmental Engineering, 140(4), 04013050. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001071
  • Loukidis, D., Chakraborty, T., & Salgado, R. (2008). Bearing capacity of strip footings on purely frictional soil under eccentric and inclined loads. Canadian Geotechnical Journal, 45(6), 768–787. https://doi.org/10.1139/T08-015
  • Loukidis, D., & Salgado, R. (2009). Bearing capacity of strip and circular footings in sand using finite elements. Computers and Geotechnics, 36(5), 871–879. https://doi.org/10.1016/j.compgeo.2009.01.012
  • Lu, N., Godt, J. W., & Wu, D. T. (2010). A closed‐form equation for effective stress in unsaturated soil. Water Resources Research, 46(5) https://doi.org/10.1029/2009WR008646
  • Lu, N., Kaya, M., Collins, B. D., & Godt, J. W. (2013). Hysteresis of unsaturated hydromechanical properties of a silty soil. Journal of Geotechnical and Geoenvironmental Engineering, 139(3), 507–510. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000786
  • Lu, N., & Likos, W. J. (2004). Unsaturated soil mechanics. Wiley.
  • Lyamin, A. V., & Sloan, S. W. (2002). Upper bound limit analysis using linear finite elements and non‐linear programming. International Journal for Numerical and Analytical Methods in Geomechanics, 26(2), 181–216. https://doi.org/10.1002/nag.198
  • Lysmer, J. (1970). Limit analysis of plane problems in soil mechanics. Journal of the Soil Mechanics and Foundations Division, 96(4), 1311–1334. https://doi.org/10.1061/JSFEAQ.0001441
  • Makrodimopoulos, A., & Martin, C. M. (2006). Lower bound limit analysis of cohesive‐frictional materials using second‐order cone programming. International Journal for Numerical Methods in Engineering, 66(4), 604–634. https://doi.org/10.1002/nme.1567
  • Meyerhof, G. (1953). The bearing capacity of foundations under eccentric and inclined loads. In Proceedings of the 3rd International Conference on SMFE (Vol. 1, pp. 440–445).
  • Meyerhof, G. G. (1951). The ultimate bearing capacity of foudations. Géotechnique, 2(4), 301–332. https://doi.org/10.1680/geot.1951.2.4.301
  • Meyerhof, G. G. (1963). Some recent research on the bearing capacity of foundations. Canadian Geotechnical Journal, 1(1), 16–26. https://doi.org/10.1139/t63-003
  • Michalowski, R. L., & You, L. (1998). Non-symmetrical limit loads on strip footings. Soils and Foundations, 38(4), 195–203. https://doi.org/10.3208/sandf.38.4_195
  • Nainegali, L., Basudhar, K. P., & Ghosh, P. (2021). Interference of proposed footing with an existing footing resting on non-linearly elastic dense and loose cohesionless soil bed. European Journal of Environmental and Civil Engineering, 25(14), 2574–2591. https://doi.org/10.1080/19648189.2019.1638311
  • Ng, C. W. W., & Leung, A. (2012). Measurements of drying and wetting permeability functions using a new stress-controllable soil column. Journal of Geotechnical and Geoenvironmental Engineering, 138(1), 58–68. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000560
  • Ngoc, T. P., Fatahi, B., & Khabbaz, H. (2019). Impacts of Drying-Wetting and Loading-Unloading Cycles on Small Strain Shear Modulus of Unsaturated Soils. International Journal of Geomechanics, 19(8), 04019090. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001463
  • Ngoc, T. P., Fatahi, B., Khabbaz, H., & Sheng, D. (2020). Impacts of matric suction equalization on small strain shear modulus of soils during air drying. Canadian Geotechnical Journal, 57(12), 1982–1997. https://doi.org/10.1139/cgj-2019-0742
  • Ng, C. W. W., Zhou, C., & Chiu, C. F. (2020). Constitutive modelling of state-dependent behaviour of unsaturated soils: an overview. Acta Geotechnica, 15(10), 2705-2725.
  • Nouzari, M. A., Jamshidi Chenari, R., Payan, M., & Pishgar, F. (2021). Pseudo-static seismic bearing capacity of shallow foundations in unsaturated soils employing limit equilibrium method. Geotechnical and Geological Engineering, 39(2), 943–956. https://doi.org/10.1007/s10706-020-01535-8
  • Nova, R., & Montrasio, L. (1991). Settlements of shallow foundations on sand. Géotechnique, 41(2), 243–256. https://doi.org/10.1680/geot.1991.41.2.243
  • Oh, W. T., & Vanapalli, S. K. (2011). Modelling the applied vertical stress and settlement relationship of shallow foundations in saturated and unsaturated sands. Canadian Geotechnical Journal, 48(3), 425–438. https://doi.org/10.1139/T10-079
  • Oh, W. T., & Vanapalli, S. K. (2013). Interpretation of the bearing capacity of unsaturated fine-grained soil using the modified effective and the modified total stress approaches. International Journal of Geomechanics, 13(6), 769–778. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000263
  • Okamura, M., Mihara, A., Takemura, J., & Kuwano, J. (2002). Effects of footing size and aspect ratio on the bearing capacity of sand subjected to eccentric loading. Soils and Foundations, 42(4), 43–56. https://doi.org/10.3208/sandf.42.4_43
  • Pakdel, P., Jamshidi Chenari, R., & Veiskarami, M. (2021). Seismic bearing capacity of shallow foundations rested on anisotropic deposits. International Journal of Geotechnical Engineering, 15(2), 181–192. https://doi.org/10.1080/19386362.2019.1655983
  • Peng, M. X., & Peng, H. X. (2019). The ultimate bearing capacity of shallow strip footings using slip-line method. Soils and Foundations, 59(3), 601–616. https://doi.org/10.1016/j.sandf.2019.01.008
  • Pham, Q. N., Ohtsuka, S., Isobe, K., & Fukumoto, Y. (2020). Limit load space of rigid footing under eccentrically inclined load. Soils and Foundations, 60(4), 811–824. https://doi.org/10.1016/j.sandf.2020.05.004
  • Safardoost Siahmazgi, A., Fathipour, H., Jamshidi Chenari, R., Veiskarami, M., & Payan, M. (2021). Evaluation of the pseudo-dynamic bearing capacity of surface footings on cohesionless soils using finite element lower bound limit analysis. Geomechanics and Geoengineering, 16, 1–13. https://doi.org/10.1080/17486025.2021.1889686
  • Salgado, R., Lyamin, A. V., Sloan, S. W., & Yu, H. S. (2004). Two-and three-dimensional bearing capacity of foundations in clay. Géotechnique, 54(5), 297–306. https://doi.org/10.1680/geot.2004.54.5.297
  • Silvestri, V. (2003). A limit equilibrium solution for bearing capacity of strip foundations on sand. Canadian Geotechnical Journal, 40(2), 351–361. https://doi.org/10.1139/t02-122
  • Sloan, S. W. (1988). Lower bound limit analysis using finite elements and linear programming. International Journal for Numerical and Analytical Methods in Geomechanics, 12(1), 61–77. https://doi.org/10.1002/nag.1610120105
  • Sloan, S. W. (1989). Upper bound limit analysis using finite elements and linear programming. International Journal for Numerical and Analytical Methods in Geomechanics, 13(3), 263–282. https://doi.org/10.1002/nag.1610130304
  • Sloan, S. W. (2013). Geotechnical stability analysis. Géotechnique, 63(7), 531–571. https://doi.org/10.1680/geot.12.RL.001
  • Song, X., & Borja, R. I. (2014). Mathematical framework for unsaturated flow in the finite deformation range. International Journal for Numerical Methods in Engineering, 97(9), 658–682. https://doi.org/10.1002/nme.4605
  • Taiebat, H. A., & Carter, J. P. (2000). Numerical studies of the bearing capacity of shallow foundations on cohesive soil subjected to combined loading. Géotechnique, 50(4), 409–418. https://doi.org/10.1680/geot.2000.50.4.409
  • Taiebat, H. A., & Carter, J. P. (2002). Bearing capacity of strip and circular foundations on undrained clay subjected to eccentric loads. Géotechnique, 52(1), 61–64. https://doi.org/10.1680/geot.52.1.61.40828
  • Tan, F., Zhou, W. H., & Yuen, K. V. (2016). Modeling the soil water retention properties of same-textured soils with different initial void ratios. Journal of Hydrology, 542, 731–743. https://doi.org/10.1016/j.jhydrol.2016.09.045
  • Tang, C., Phoon, K. K., & Toh, K. C. (2015). Effect of footing width on Nγ and failure envelope of eccentrically and obliquely loaded strip footings on sand. Canadian Geotechnical Journal, 52(6), 694–707. https://doi.org/10.1139/cgj-2013-0378
  • Tang, Y., Taiebat, H. A., & Russell, A. R. (2017). Bearing capacity of shallow foundations in unsaturated soil considering hydraulic hysteresis and three drainage conditions. International Journal of Geomechanics, 17(6), 04016142. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000845
  • Terzaghi, K. (1943). Theoretical soil mechanics. Wiley.
  • Ukritchon, B., Whittle, A. J., & Klangvijit, C. (2003). Calculations of bearing capacity factor N γ using numerical limit analyses. Journal of Geotechnical and Geoenvironmental Engineering, 129(5), 468–474. https://doi.org/10.1061/(ASCE)1090-0241(2003)129:6(468)
  • Ukritchon, B., Whittle, A. J., & Sloan, S. W. (1998). Undrained limit analyses for combined loading of strip footings on clay. Journal of Geotechnical and Geoenvironmental Engineering, 124(3), 265–276. https://doi.org/10.1061/(ASCE)1090-0241(1998)124:3(265)
  • Vahedifard, F., Leshchinsky, B. A., Mortezaei, K., & Lu, N. (2015). Active earth pressures for unsaturated retaining structures. Journal of Geotechnical and Geoenvironmental Engineering, 141(11), 04015048. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001356
  • Vahedifard, F., & Robinson, J. D. (2016). Unified method for estimating the ultimate bearing capacity of shallow foundations in variably saturated soils under steady flow. Journal of Geotechnical and Geoenvironmental Engineering, 142(4), 04015095. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001445
  • Van Baars, S. (2014). The inclination and shape factors for the bearing capacity of footings. Soils and Foundations, 54(5), 985–992. https://doi.org/10.1016/j.sandf.2014.09.004
  • van Genuchten, M. T. (1980). A closed‐form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Science Society of America Journal, 44(5), 892–898. https://doi.org/10.2136/sssaj1980.03615995004400050002x
  • Veiskarami, M., Jamshidi Chenari, R., & Jameei, A. A. (2017). Bearing capacity of strip footings on anisotropic soils by the finite elements and linear programming. International Journal of Geomechanics, 17(12), 04017119. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001018
  • Vesić, A. S. (1973). Analysis of ultimate loads of shallow foundations. Journal of the Soil Mechanics and Foundations Division, 99(1), 45-73.
  • Vesic, A. S. (1975). Bearing capacity of shallow foundations. In Foundation engineering handbook. Springer.
  • Wang, Y., & Akeju, O. V. (2016). Quantifying the cross-correlation between effective cohesion and friction angle of soil from limited site-specific data. Soils and Foundations, 56(6), 1055–1070. https://doi.org/10.1016/j.sandf.2016.11.009
  • Wang, L., Hu, W., Sun, D. A., & Li, L. (2019b). 3D stability of unsaturated soil slopes with tension cracks under steady infiltrations. International Journal for Numerical and Analytical Methods in Geomechanics, 43(6), 1184–1206. https://doi.org/10.1002/nag.2889
  • Wang, L., Sun, D., Chen, B., & Li, J. (2019a). Three-dimensional seismic stability of unsaturated soil slopes using a semi-analytical method. Computers and Geotechnics, 110, 296–307. https://doi.org/10.1016/j.compgeo.2019.02.008
  • Wang, L., Sun, D., Yao, Y., & Tan, Y. (2019c). Seismic stability of 3D piled unsaturated earth slopes using kinematic limit analysis. Soil Dynamics and Earthquake Engineering, 126, 105821. https://doi.org/10.1016/j.soildyn.2019.105821
  • Wuttke, F., Kafle, B., Lins, Y., & Schanz, T. (2013). Macroelement for statically loaded shallow strip foundation resting on unsaturated soil. International Journal of Geomechanics, 13(5), 557–564. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000254
  • Xiao, Y., Zhao, M., Zhao, H., & Zhang, R. (2018). Finite element limit analysis of the bearing capacity of strip footing on a rock mass with voids. International Journal of Geomechanics, 18(9), 04018108. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001262
  • Xiong, Y., Ye, G., Zhu, H., Zhang, S., & Zhang, F. (2016). Thermo-elastoplastic constitutive model for unsaturated soils. Acta Geotechnica, 11(6), 1287–1302. https://doi.org/10.1007/s11440-016-0462-8
  • Yahia-Cherif, H., Mabrouki, A., Benmeddour, D., & Mellas, M. (2017). Bearing capacity of embedded strip footings on cohesionless soil under vertical and horizontal loads. Geotechnical and Geological Engineering, 35(2), 547–558. https://doi.org/10.1007/s10706-016-0124-5
  • Yuan, S., & Du, J. (2018). Effective stress-based upper bound limit analysis of unsaturated soils using the weak form quadrature element method. Computers and Geotechnics, 98, 172–180. https://doi.org/10.1016/j.compgeo.2018.02.008
  • Yuan, S., & Du, J. (2020). A lower-bound formulation for unsaturated soils. Géotechnique, 70(2), 123–137. https://doi.org/10.1680/jgeot.18.P.103
  • Zheng, G., Zhao, J., Zhou, H., & Zhang, T. (2019). Ultimate bearing capacity of strip footings on sand overlying clay under inclined loading. Computers and Geotechnics, 106, 266–273. https://doi.org/10.1016/j.compgeo.2018.11.003
  • Zhou, H., Diao, Y., Zheng, G., Han, J., & Jia, R. (2017a). Failure modes and bearing capacity of strip footings on soft ground reinforced by floating stone columns. Acta Geotechnica, 12(5), 1089–1103. https://doi.org/10.1007/s11440-017-0535-3
  • Zhou, W. H., Xu, X., & Garg, A. (2016). Measurement of unsaturated shear strength parameters of silty sand and its correlation with unconfined compressive strength. Measurement, 93, 351–358. https://doi.org/10.1016/j.measurement.2016.07.049
  • Zhou, W. H., Zhao, L. S., Garg, A., & Yuen, K. V. (2017b). Generalized analytical solution for the consolidation of unsaturated soil under partially permeable boundary conditions. International Journal of Geomechanics, 17(9), 04017048. 1-16. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000942
  • Zhou, W. H., Zhao, L. S., Lok, T. M. H., Mei, G. X., & Li, X. B. (2018b). Analytical solutions to the axisymmetric consolidation of unsaturated soils. Journal of Engineering Mechanics, 144(1), 04017152. 1-11. https://doi.org/10.1061/(ASCE)EM.1943-7889.0001382
  • Zhou, H., Zheng, G., He, X., Xu, X., Zhang, T., & Yang, X. (2018a). Bearing capacity of strip footings on c–φ soils with square voids. Acta Geotechnica, 13(3), 747–755. https://doi.org/10.1007/s11440-018-0630-0
  • Zhu, D. (2000). The least upper-bound solutions for bearing capacity factor Nγ. Soils and Foundations, 40(1), 123–129. https://doi.org/10.3208/sandf.40.123

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.