998
Views
21
CrossRef citations to date
0
Altmetric
Review Article

Compressive strength of geopolymer concrete composites: a systematic comprehensive review, analysis and modeling

ORCID Icon, , , , ORCID Icon &
Pages 1383-1428 | Received 11 Oct 2021, Accepted 23 May 2022, Published online: 06 Jun 2022

References

  • Abdullah, M. M. A., Hussin, K., Bnhussain, M., Ismail, K. N., & Ibrahim, W. M. W. (2011). Mechanism and chemical reaction of fly ash geopolymer cement-a review. International Journal of Pure and Applied Sciences and Technology 6(1), 35–44.
  • Abhilash, P., Sashidhar, C., & Reddy, I. R. (2016). Strength properties of Fly ash and GGBS based geo-polymer concrete. International Journal of ChemTech Research, 61), 35–44.
  • Adak, D., Sarkar, M., & Mandal, S. (2017). Structural performance of nano-silica modified fly-ash based geopolymer concrete. Construction and Building Materials, 135, 430–439. https://doi.org/10.1016/j.conbuildmat.2016.12.111
  • Ahmari, S., & Zhang, L. (2012). Production of eco-friendly bricks from copper mine tailings through geopolymerization. Construction and Building Materials, 29, 323–331. https://doi.org/10.1016/j.conbuildmat.2011.10.048
  • Ahmaruzzaman, M. (2010). A review on the utilization of fly ash. Progress in Energy and Combustion Science, 36(3), 327–363. https://doi.org/10.1016/j.pecs.2009.11.003
  • Ahmed, H. U., Abdalla, A. A., Mohammed, A. S., Mohammed, A. A., & Mosavi, A. (2022a). Statistical methods for modeling the compressive strength of geopolymer mortar. Materials, 15(5), 1868. https://doi.org/10.3390/ma15051868
  • Ahmed, H. U., Faraj, R. H., Hilal, N., Mohammed, A. A., & Sherwani, A. F. H. (2021b). Use of recycled fibers in concrete composites: A systematic comprehensive review. Composites Part B: Engineering, 215, 108769. https://doi.org/10.1016/j.compositesb.2021.108769
  • Ahmed, H. U., Mohammed, A. S., Faraj, R. H., Qaidi, S. M., & Mohammed, A. A. (2022b). Compressive strength of geopolymer concrete modified with nano-silica: Experimental and modeling investigations. Case Studies in Construction Materials, 16, e01036. https://doi.org/10.1016/j.cscm.2022.e01036
  • Ahmed, H. U., Mohammed, A. A., & Mohammad, A. S. (2022). The role of nanomaterials in geopolymer concrete composites: A state-of-the-art review. Journal of Building Engineering,49, 104062. https://doi.org/10.1016/j.jobe.2022.104062
  • Ahmed, H. U., Mohammed, A. S., Mohammed, A. A., & Faraj, R. H. (2021). Systematic multiscale models to predict the compressive strength of fly ash-based geopolymer concrete at various mixture proportions and curing regimes. PloS ONE, 16(6), e0253006. https://doi.org/10.1371/journal.pone.0253006
  • Ahmed, H. U., Mohammed, A. A., Rafiq, S., Mohammed, A. S., Mosavi, A., Sor, N. H., & Qaidi, S. (2021a). Compressive strength of sustainable geopolymer concrete composites: A state-of-the-art review. Sustainability, 13(24), 13502. https://doi.org/10.3390/su132413502
  • Al-Azzawi, M., Yu, T., & Hadi, M. N. (2018, June). Factors affecting the bond strength between the fly ash-based geopolymer concrete and steel reinforcement. In Structures (Vol. 14, pp. 262–272). Elsevier. https://doi.org/10.1016/j.istruc.2018.03.010
  • Albitar, M., Visintin, P., Ali, M. M., & Drechsler, M. (2015). Assessing behaviour of fresh and hardened geopolymer concrete mixed with class-F fly ash. KSCE Journal of Civil Engineering, 19(5), 1445–1455. https://doi.org/10.1007/s12205-014-1254-z
  • Aliabdo, A. A., Abd Elmoaty, M., & Salem, H. A. (2016). Effect of water addition, plasticizer and alkaline solution constitution on fly ash based geopolymer concrete performance. Construction and Building Materials, 121, 694–703. https://doi.org/10.1016/j.conbuildmat.2016.06.062
  • Alonso, S., & Palomo, A. (2001). Alkaline activation of metakaolin and calcium hydroxide mixtures: Influence of temperature, activator concentration and solids ratio. Materials Letters, 47(1–2), 55–62. https://doi.org/10.1016/S0167-577X(00)00212-3
  • Awoyera, P. O. (2016). Nonlinear finite element analysis of fibre-reinforced concrete beam under static loading. Journal of Engineering Science and Technology, 11(12), 1669–1677.
  • Awoyera, P. O. (2018). Predictive models for determination of compressive and split-tensile strengths of steel slag aggregate concrete. Materials Research Innovations, 22(5), 287–293. https://doi.org/10.1080/14328917.2017.1317394
  • Awoyera, P. O., Kirgiz, M. S., Viloria, A., & Ovallos-Gazabon, D. (2020). Estimating strength properties of geopolymer self-compacting concrete using machine learning techniques. Journal of Materials Research and Technology, 9(4), 9016–9028. https://doi.org/10.1016/j.jmrt.2020.06.008
  • Barbosa, V. F., MacKenzie, K. J., & Thaumaturgo, C. (2000). Synthesis and characterisation of materials based on inorganic polymers of alumina and silica: Sodium polysialate polymers. International Journal of Inorganic Materials, 2(4), 309–317. https://doi.org/10.1016/S1466-6049(00)00041-6
  • Bhogayata, A. C., & Arora, N. K. (2019). Utilization of metalized plastic waste of food packaging articles in geopolymer concrete. Journal of Material Cycles and Waste Management, 21(4), 1014–1026. https://doi.org/10.1007/s10163-019-00859-9
  • Çevik, A., Alzeebaree, R., Humur, G., Niş, A., & Gülşan, M. E. (2018). Effect of nano-silica on the chemical durability and mechanical performance of fly ash based geopolymer concrete. Ceramics International, 44(11), 12253–12264. https://doi.org/10.1016/j.ceramint.2018.04.009
  • Chen, Y., Zhang, Y., Chen, T., Zhao, Y., & Bao, S. (2011). Preparation of eco-friendly construction bricks from hematite tailings. Construction and Building Materials, 25(4), 2107–2111. https://doi.org/10.1016/j.conbuildmat.2010.11.025
  • Chindaprasirt, P., & Chalee, W. (2014). Effect of sodium hydroxide concentration on chloride penetration and steel corrosion of fly ash-based geopolymer concrete under marine site. Construction and Building Materials, 63, 303–310. https://doi.org/10.1016/j.conbuildmat.2014.04.010
  • Chithambaram, S. J., Kumar, S., Prasad, M. M., & Adak, D. (2018). Effect of parameters on the compressive strength of fly ash based geopolymer concrete. Structural Concrete, 19(4), 1202–1209. https://doi.org/10.1002/suco.201700235
  • Cui, Y., Gao, K., & Zhang, P. (2020). Experimental and statistical study on mechanical characteristics of geopolymer concrete. Materials, 13(7), 1651. https://doi.org/10.3390/ma13071651
  • Das, S. K., & Shrivastava, S. (2021). Siliceous fly ash and blast furnace slag based geopolymer concrete under ambient temperature curing condition. Structural Concrete, 22(S1), 341-351. https://doi.org/10.1002/suco.201900201
  • Davidovits, J. (1991). Geopolymer: Inorganic polymer new materials. Journal of Thermal Analysis, 37(8), 1633–1656. https://doi.org/10.1007/BF01912193
  • Deb, P. S., Nath, P., & Sarker, P. K. (2014). The effects of ground granulated blast-furnace slag blending with fly ash and activator content on the workability and strength properties of geopolymer concrete cured at ambient temperature. Materials & Design (1980-2015), 62, 32–39. https://doi.org/10.1016/j.matdes.2014.05.001
  • Demircan, E., Harendra, S., & Vipulanandan, C. (2011). Artificial neural network and nonlinear models for gelling time and maximum curing temperature rise in polymer grouts. Journal of Materials in Civil Engineering, 23(4), 372–377. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000172
  • Diaz, E. I., Allouche, E. N., & Eklund, S. (2010). Factors affecting the suitability of fly ash as source material for geopolymers. Fuel, 89(5), 992–996. https://doi.org/10.1016/j.fuel.2009.09.012
  • Duxson, P., Fernández-Jiménez, A., Provis, J. L., Lukey, G. C., Palomo, A., & van Deventer, J. S. (2007). Geopolymer technology: The current state of the art. Journal of Materials Science, 42(9), 2917–2933. https://doi.org/10.1007/s10853-006-0637-z
  • Embong, R., Kusbiantoro, A., Shafiq, N., & Nuruddin, M. F. (2016). Strength and microstructural properties of fly ash based geopolymer concrete containing high-calcium and water-absorptive aggregate. Journal of Cleaner Production, 112, 816–822. https://doi.org/10.1016/j.jclepro.2015.06.058
  • Fang, G., Ho, W. K., Tu, W., & Zhang, M. (2018). Workability and mechanical properties of alkali-activated fly ash-slag concrete cured at ambient temperature. Construction and Building Materials, 172, 476–487. https://doi.org/10.1016/j.conbuildmat.2018.04.008
  • Faraj, R. H., Mohammed, A. A., Mohammed, A., Omer, K. M., & Ahmed, H. U. (2021). Systematic multiscale models to predict the compressive strength of self-compacting concretes modified with nanosilica at different curing ages. Engineering with Computers, 1–24. https://doi.org/10.1007/s00366-021-01385-9
  • Fernandez-Jimenez, A. M., Palomo, A., & Lopez-Hombrados, C. (2006). Engineering properties of alkali-activated fly ash concrete. ACI Materials Journal, 103(2), 106.
  • Ghafoor, M. T., Khan, Q. S., Qazi, A. U., Sheikh, M. N., & Hadi, M. N. S. (2021). Influence of alkaline activators on the mechanical properties of fly ash based geopolymer concrete cured at ambient temperature. Construction and Building Materials, 273, 121752. https://doi.org/10.1016/j.conbuildmat.2020.121752
  • Gholampour, A., Mansouri, I., Kisi, O., & Ozbakkaloglu, T. (2020). Evaluation of mechanical properties of concretes containing coarse recycled concrete aggregates using multivariate adaptive regression splines (MARS), M5 model tree (M5Tree), and least squares support vector regression (LSSVR) models. Neural Computing and Applications, 32(1), 295–308. https://doi.org/10.1007/s00521-018-3630-y
  • Giasuddin, H. M., Sanjayan, J. G., & Ranjith, P. G. (2013). Strength of geopolymer cured in saline water in ambient conditions. Fuel, 107, 34–39. https://doi.org/10.1016/j.fuel.2013.01.035
  • Golafshani, E. M., & Behnood, A. (2018). Application of soft computing methods for predicting the elastic modulus of recycled aggregate concrete. Journal of Cleaner Production, 176, 1163–1176. https://doi.org/10.1016/j.jclepro.2017.11.186
  • Golafshani, E. M., Behnood, A., & Arashpour, M. (2020). Predicting the compressive strength of normal and high-performance concretes using ANN and ANFIS hybridized with grey wolf optimizer. Construction and Building Material, s232, 117266. https://doi.org/10.1016/j.conbuildmat.2019.117266
  • Gomaa, E., Sargon, S., Kashosi, C., Gheni, A., & ElGawady, M. A. (2020). Mechanical properties of high early strength class C fly ash-based alkali activated concrete. Transportation Research Record, 2674(5), 430–443.
  • Görhan, G., & Kürklü, G. (2014). The influence of the NaOH solution on the properties of the fly ash-based geopolymer mortar cured at different temperatures. Composites Part B: Engineering, 58, 371–377. https://doi.org/10.1016/j.compositesb.2013.10.082
  • Gunasekara, C., Law, D. W., & Setunge, S. (2016). Long term permeation properties of different fly ash geopolymer concretes. Construction and Building Materials, 124, 352–362. https://doi.org/10.1016/j.conbuildmat.2016.07.121
  • Hardjito, D., & Rangan, B. V. (2005). Development and properties of low-calcium fly ash-based geopolymer concrete.
  • Hardjito, D., Wallah, S. E., Sumajouw, D. M., & Rangan, B. V. (2004). On the development of fly ash-based geopolymer concrete. Materials Journal, 101(6), 467–472.
  • Hardjito, D., Wallah, S. E., Sumajouw, D. M. J., & Rangan, B. V. (2005, August). Introducing fly ash-based geopolymer concrete: Manufacture and engineering properties [Paper presentation]. 30th Conference on Our World in Concrete & Structures (Vol. 24).
  • Hassan, A., Arif, M., & Shariq, M. (2019). Effect of curing condition on the mechanical properties of fly ash-based geopolymer concrete. SN Applied Sciences, 1(12), 1694. https://doi.org/10.1007/s42452-019-1774-8
  • He, J., Jie, Y., Zhang, J., Yu, Y., & Zhang, G. (2013). Synthesis and characterization of red mud and rice husk ash-based geopolymer composites. Cement and Concrete Composites, 37, 108–118. https://doi.org/10.1016/j.cemconcomp.2012.11.010
  • Ibrahim, M., Johari, M. A. M., Maslehuddin, M., & Rahman, M. K. (2018). Influence of nano-SiO2 on the strength and microstructure of natural pozzolan based alkali activated concrete. Construction and Building Materials, 173, 573–585. https://doi.org/10.1016/j.conbuildmat.2018.04.051
  • Islam, A., Alengaram, U. J., Jumaat, M. Z., & Bashar, I. I. (2014). The development of compressive strength of ground granulated blast furnace slag-palm oil fuel ash-fly ash based geopolymer mortar. Materials & Design (1980-2015), 56, 833–841. https://doi.org/10.1016/j.matdes.2013.11.080
  • Jaydeep, S., & Chakravarthy, B. J. (2013). Study on fly ash based geo-polymer concrete using admixtures. International Journal of Engineering Trends and Technology, 4(10), 4614–4617.
  • Jindal, B. B., Parveen, Singhal, D., & Goyal, A. (2017). Predicting relationship between mechanical properties of low calcium fly ash-based geopolymer concrete. Transactions of the Indian Ceramic Society, 76(4), 258–265.
  • Joseph, B., & Mathew, G. (2012). Influence of aggregate content on the behavior of fly ash based geopolymer concrete. Scientia Iranica, 19(5), 1188–1194. https://doi.org/10.1016/j.scient.2012.07.006
  • Junaid, M. T., Kayali, O., & Khennane, A. (2017). Response of alkali activated low calcium fly-ash based geopolymer concrete under compressive load at elevated temperatures. Mater. Struct. 50, 50.
  • Komljenović, M., Baščarević, Z., & Bradić, V. (2010). Mechanical and microstructural properties of alkali-activated fly ash geopolymers. Journal of Hazardous Materials, 181(1–3), 35–42. https://doi.org/10.1016/j.jhazmat.2010.04.064
  • Krishnaraja, A. R., Sathishkumar, N. P., Kumar, T. S., & Kumar, P. D. (2014). Mechanical behaviour of geopolymer concrete under ambient curing. International Journal of Scientific Engineering and Technology, 3(2), 130–132.
  • Kumar, S., & Kumar, R. (2011). Mechanical activation of fly ash: Effect on reaction, structure and properties of resulting geopolymer. Ceramics International, 37(2), 533–541. https://doi.org/10.1016/j.ceramint.2010.09.038
  • Kumaravel, S. (2014). Development of various curing effect of nominal strength geopolymer concrete. Journal of Engineering Science and Technology Review, 7(1), 116–119. https://doi.org/10.25103/jestr.071.19
  • Kurtoglu, A. E., Alzeebaree, R., Aljumaili, O., Nis, A., Gulsan, M. E., Humur, G., & Cevik, A. (2018). Mechanical and durability properties of fly ash and slag based geopolymer concrete. Advances in Concrete Construction, 6(4), 345.
  • Li, M. F., Tang, X. P., Wu, W., & Liu, H. B. (2013). General models for estimating daily global solar radiation for different solar radiation zones in mainland China. Energy Conversion and Management, 70, 139–148. https://doi.org/10.1016/j.enconman.2013.03.004
  • Liew, Y.-M., Heah, C.-Y., Mohd Mustafa, A. B., & Kamarudin, H. (2016). Structure and properties of clay-based geopolymer cements: A review. Progress in Materials Science, 83, 595–629. https://doi.org/10.1016/j.pmatsci.2016.08.002
  • Malerba, D., Esposito, F., Ceci, M., & Appice, A. (2004). Top-down induction of model trees with regression and splitting nodes. IEEE Transactions on Pattern Analysis and Machine intelligence, 26(5), 612–625.
  • Mane, S., & Jadhav, H. S. (2012). Investigation of geopolymer mortar and concrete under high temperature. International Journal of Emerging Technology and Advanced Engineering, 2(12), 384–390.
  • Mehta, A., & Siddique, R. (2017). Sulfuric acid resistance of fly ash based geopolymer concrete. Construction and Building Materials, 146, 136–143. https://doi.org/10.1016/j.conbuildmat.2017.04.077
  • Mermerdaş, K., Manguri, S., Nassani, D. E., & Oleiwi, S. M. (2017). Effect of aggregate properties on the mechanical and absorption characteristics of geopolymer mortar. Engineering Science and Technology, an International Journal, 20(6), 1642–1652. https://doi.org/10.1016/j.jestch.2017.11.009
  • Mijarsh, M. J. A., Johari, M. M., & Ahmad, Z. A. (2014). Synthesis of geopolymer from large amounts of treated palm oil fuel ash: Application of the Taguchi method in investigating the main parameters affecting compressive strength. Construction and Building Materials, 52, 473–481. https://doi.org/10.1016/j.conbuildmat.2013.11.039
  • Mohammed, A. S. (2018). Vipulanandan model for the rheological properties with ultimate shear stress of oil well cement modified with nanoclay. Egyptian Journal of Petroleum, 27(3), 335–347. https://doi.org/10.1016/j.ejpe.2017.05.007
  • Mohammed, A. A., Ahmed, H. U., & Mosavi, A. (2021). Survey of mechanical properties of geopolymer concrete: A comprehensive review and data analysis. Materials, 14(16), 4690. https://doi.org/10.3390/ma14164690
  • Mohammed, A., Rafiq, S., Sihag, P., Kurda, R., & Mahmood, W. (2020b). Soft computing techniques: Systematic multiscale models to predict the compressive strength of HVFA concrete based on mix proportions and curing times. Journal of Building Engineering, 33, 101851. https://doi.org/10.1016/j.jobe.2020.101851
  • Mohammed, A., Rafiq, S., Sihag, P., Kurda, R., Mahmood, W., Ghafor, K., & Sarwar, W. (2020a). ANN, M5P-tree and nonlinear regression approaches with statistical evaluations to predict the compressive strength of cement-based mortar modified with fly ash. Journal of Materials Research and Technology, 9(6), 12416–12427. https://doi.org/10.1016/j.jmrt.2020.08.083
  • Morla, P., Gupta, R., Azarsa, P., & Sharma, A. (2021). Corrosion evaluation of geopolymer concrete made with fly ash and bottom ash. Sustainability, 13(1), 398.
  • Morsy, M. S., Alsayed, S. H., Al-Salloum, Y., & Almusallam, T. (2014). Effect of sodium silicate to sodium hydroxide ratios on strength and microstructure of fly ash geopolymer binder. Arabian Journal for Science and Engineering, 39(6), 4333–4339. https://doi.org/10.1007/s13369-014-1093-8
  • Muhammad, N., Baharom, S., Ghazali, N. A. M., & Alias, N. A. (2019). Effect of heat curing temperatures on fly ash-based geopolymer concrete. International Journal of Engineering & Technology, 8, 15–19.
  • Mustafa Al Bakri, A. M., Kamarudin, H., Bnhussain, M., Rafiza, A. R., & Zarina, Y. (2012). Effect of Na2 SiO3/NaOH ratios and NaOH molarities on compressive strength of fly-ash-based geopolymer. ACI Materials Journal, 109(5), 503–508.
  • Nagajothi, S., & Elavenil, S. (2020). Effect of GGBS addition on reactivity and microstructure properties of ambient cured fly ash based geopolymer concrete. Silicon, 13(2), 507–516.
  • Nath, P., & Sarker, P. K. (2014). Effect of GGBFS on setting, workability and early strength properties of fly ash geopolymer concrete cured in ambient condition. Construction and Building Materials, 66, 163–171. https://doi.org/10.1016/j.conbuildmat.2014.05.080
  • Nath, P., & Sarker, P. K. (2015). Use of OPC to improve setting and early strength properties of low calcium fly ash geopolymer concrete cured at room temperature. Cement and Concrete Composites55, 205–214. https://doi.org/10.1016/j.cemconcomp.2014.08.008
  • Nath, P., & Sarker, P. K. (2017). Flexural strength and elastic modulus of ambient-cured blended low-calcium fly ash geopolymer concrete. Construction and Building Materials, 130, 22–31. https://doi.org/10.1016/j.conbuildmat.2016.11.034
  • Nawaz, M., Heitor, A., & Sivakumar, M. (2020). Geopolymers in construction-recent developments. Construction and Building Materials, 260, 120472. https://doi.org/10.1016/j.conbuildmat.2020.120472
  • Nuaklong, P., Jongvivatsakul, P., Pothisiri, T., Sata, V., & Chindaprasirt, P. (2020). Influence of rice husk ash on mechanical properties and fire resistance of recycled aggregate high-calcium fly ash geopolymer concrete. Journal of Cleaner Production, 252, 119797. https://doi.org/10.1016/j.jclepro.2019.119797
  • Nuruddin, M. N., Kusbiantoro, A. K., Qazi, S. Q., Darmawan, M. D., & Husin, N. H. (2011). Development of geopolymer concrete with different curing conditions. IPTEK the Journal for Technology and Science, 22(1), 24-28. https://doi.org/10.12962/j20882033.v22i1.54
  • Okoye, F. N., Durgaprasad, J., & Singh, N. B. (2016). Effect of silica fume on the mechanical properties of fly ash based-geopolymer concrete. Ceramics International, 42(2), 3000–3006. https://doi.org/10.1016/j.ceramint.2015.10.084
  • Okoye, F. N., Prakash, S., & Singh, N. B. (2017). Durability of fly ash based geopolymer concrete in the presence of silica fume. Journal of Cleaner Production, 149, 1062–1067. https://doi.org/10.1016/j.jclepro.2017.02.176
  • Olivia, M., & Nikraz, H. (2012). Properties of fly ash geopolymer concrete designed by Taguchi method. Materials & Design (1980-2015), 36, 191–198. https://doi.org/10.1016/j.matdes.2011.10.036
  • Olivia, M., Sarker, P., & Nikraz, H. (2008). Water penetrability of low calcium fly ash geopolymer concrete. In International Conference on Construction and Building Technology 2008 (Vol. 46, pp. 517–530). Kuala Lumpur.
  • Palomo, A., Blanco-Varela, M. T., Granizo, M. L., Puertas, F., Vazquez, T., & Grutzeck, M. W. (1999). Chemical stability of cementitious materials based on metakaolin. Cement and Concrete Research, 29(7), 997–1004. https://doi.org/10.1016/S0008-8846(99)00074-5
  • Parichatprecha, R., & Nimityongskul, P. (2009). Analysis of durability of high performance concrete using artificial neural networks. Construction and Building Materials, 23(2), 910–917. https://doi.org/10.1016/j.conbuildmat.2008.04.015
  • Part, W. K., Ramli, M., & Cheah, C. B. (2015). An overview on the influence of various factors on the properties of geopolymer concrete derived from industrial by-products. Construction and Building Materials, 77, 370–395. https://doi.org/10.1016/j.conbuildmat.2014.12.065
  • Patankar, S. V., Jamkar, S. S., & Ghugal, Y. M. (2013). Effect of water-to-geopolymer binder ratio on the production of fly ash based geopolymer concrete. International Journal of Advanced Technology in Civil Engineering, 2(1), 79–83.
  • Pavithra, P. E., Reddy, M. S., Dinakar, P., Rao, B. H., Satpathy, B. K., & Mohanty, A. N. (2016). A mix design procedure for geopolymer concrete with fly ash. Journal of Cleaner Production, 133, 117–125. https://doi.org/10.1016/j.jclepro.2016.05.041
  • Phoo-ngernkham, T., Maegawa, A., Mishima, N., Hatanaka, S., & Chindaprasirt, P. (2015). Effects of sodium hydroxide and sodium silicate solutions on compressive and shear bond strengths of FA–GBFS geopolymer. Construction and Building Materials, 91, 1–8. https://doi.org/10.1016/j.conbuildmat.2015.05.001
  • Qaidi, S. M., Tayeh, B. A., Zeyad, A. M., de Azevedo, A. R., Ahmed, H. U., & Emad, W. (2022). Recycling of mine tailings for the geopolymers production: A systematic review. Case Studies in Construction Materials, 16, e00933. https://doi.org/10.1016/j.cscm.2022.e00933
  • Quinlan, R. J. (1992). Learning with continuous classes [Paper presentation]. 5th Australian Joint Conference on Artificial Intelligence (pp. 343–348). Singapore.
  • Ramujee, K. (2014). Development of low calcium flyash based geopolymer concrete. International Journal of Engineering and Technology, 6(1), 1–4. https://doi.org/10.7763/IJET.2014.V6.654
  • Ramujee, K., & PothaRaju, M. (2017). Mechanical properties of geopolymer concrete composites. Materials Today: Proceedings4(2), 2937–2945.
  • Rickard, W. D., Williams, R., Temuujin, J., & Van Riessen, A. (2011). Assessing the suitability of three Australian fly ashes as an aluminosilicate source for geopolymers in high temperature applications. Materials Science and Engineering: A, 528(9), 3390–3397. https://doi.org/10.1016/j.msea.2011.01.005
  • Ridtirud, C., Chindaprasirt, P., & Pimraksa, K. (2011). Factors affecting the shrinkage of fly ash geopolymers. International Journal of Minerals, Metallurgy, and Materials, 18(1), 100–104. https://doi.org/10.1007/s12613-011-0407-z
  • Ryu, G. S., Lee, Y. B., Koh, K. T., & Chung, Y. S. (2013). The mechanical properties of fly ash-based geopolymer concrete with alkaline activators. Construction and Building Materials, 47, 409–418. https://doi.org/10.1016/j.conbuildmat.2013.05.069
  • Sadrmomtazi, A., Sobhani, J., & Mirgozar, M. A. (2013). Modeling compressive strength of EPS lightweight concrete using regression, neural network and ANFIS. Construction and Building Materials, 42, 205–216. https://doi.org/10.1016/j.conbuildmat.2013.01.016
  • Sagoe-Crentsil, K., & Weng, L. (2007). Dissolution processes, hydrolysis and condensation reactions during geopolymer synthesis: Part II. High Si/Al ratio systems. Journal of Materials Science, 42(9), 3007–3014. https://doi.org/10.1007/s10853-006-0818-9
  • Saravanan, S., & Elavenil, S. (2018). Strength properties of geopolymer concrete using M sand by assessing their mechanical characteristics. ARPN Journal of Engineering and Applied Sciences, 13(13), 4028–4041.
  • Sarker, P. K. (2011). Bond strength of reinforcing steel embedded in fly ash-based geopolymer concrete. Materials and Structures, 44(5), 1021–1030. https://doi.org/10.1617/s11527-010-9683-8
  • Sarker, P. K., Haque, R., & Ramgolam, K. V. (2013). Fracture behaviour of heat cured fly ash based geopolymer concrete. Materials & Design, 44, 580–586. https://doi.org/10.1016/j.matdes.2012.08.005
  • Sastry, K. G. K., Sahitya, P., & Ravitheja, A. (2020). Influence of nano TiO2 on strength and durability properties of geopolymer concrete. In Materials Today: Proceedings.
  • Sathonsaowaphak, A., Chindaprasirt, P., & Pimraksa, K. (2009). Workability and strength of lignite bottom ash geopolymer mortar. Journal of Hazardous Materials, 168(1), 44–50.
  • Shahmansouri, A. A., Yazdani, M., Ghanbari, S., Bengar, H. A., Jafari, A., & Ghatte, H. F. (2021). Artificial neural network model to predict the compressive strength of eco-friendly geopolymer concrete incorporating silica fume and natural zeolite. Journal of Cleaner Production, 279, 123697. https://doi.org/10.1016/j.jclepro.2020.123697
  • Shaikh, F. U. A., & Vimonsatit, V. (2015). Compressive strength of fly‐ash‐based geopolymer concrete at elevated temperatures. Fire and Materials, 39(2), 174–188. https://doi.org/10.1002/fam.2240
  • Sharif, H. H. (2021). Fresh and mechanical characteristics of eco-efficient geopolymer concrete incorporating nano-silica: An overview. Kurdistan Journal of Applied Research, 6(2), 64–74. https://doi.org/10.24017/science.2021.2.6
  • Shehab, H. K., Eisa, A. S., & Wahba, A. M. (2016). Mechanical properties of fly ash based geopolymer concrete with full and partial cement replacement. Construction and Building Materials, 126, 560–565. https://doi.org/10.1016/j.conbuildmat.2016.09.059
  • Sihag, P., Jain, P., & Kumar, M. (2018). Modelling of impact of water quality on recharging rate of storm water filter system using various kernel function based regression. Modeling Earth Systems and Environment, 4(1), 61–68. https://doi.org/10.1007/s40808-017-0410-0
  • Singhal, D., Junaid, M. T., Jindal, B. B., & Mehta, A. (2018). Mechanical and microstructural properties of fly ash based geopolymer concrete incorporating alccofine at ambient curing. Construction and Building Materials, 180, 298–307.
  • Sivasakthi, M., Jeyalakshmi, R., & Rajamane, N. P. (2021). Fly ash geopolymer mortar: Impact of the substitution of river sand by copper slag as a fine aggregate on its thermal resistance properties. Journal of Cleaner Production, 279, 123766. https://doi.org/10.1016/j.jclepro.2020.123766
  • Sreenivasulu, C., Guru, J. J., Sekhar, R. M. V., & Pavan, K. D. (2016). Effect of fine aggregate blending on short-term mechanical properties of geopolymer concrete. Asian Journal of Civil Engineering, 17(5), 537–550.
  • Sumajouw, D. M. J., Hardjito, D., Wallah, S. E., & Rangan, B. V. (2007). Fly ash-based geopolymer concrete: Study of slender reinforced columns. Journal of Materials Science, 42(9), 3124–3130. https://doi.org/10.1007/s10853-006-0523-8
  • Thakur, R. N., & Ghosh, S. (2009). Effect of mix composition on compressive strength and microstructure of fly ash based geopolymer composites. ARPN Journal of Engineering and Applied Sciences, 4(4), 68–74.
  • Thokchom, S., Mandal, K. K., & Ghosh, S. (2012). Effect of Si/Al ratio on performance of fly ash geopolymers at elevated temperature. Arabian Journal for Science and Engineering, 37(4), 977–989. https://doi.org/10.1007/s13369-012-0230-5
  • Topark-Ngarm, P., Chindaprasirt, P., & Sata, V. (2015). Setting time, strength, and bond of high-calcium fly ash geopolymer concrete. Journal of Materials in Civil Engineering, 27(7), 04014198. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001157
  • Varaprasad, B. S. K. R. J., & Reddy, K. N. K. (2010). Strength and workability of low lime fly-ash based geopolymer concrete. Indian Journal of Science and Technology, 3(12), 1188–1189. https://doi.org/10.17485/ijst/2010/v3i12.11
  • Vignesh, P., & Vivek, K. (2015). An experimental investigation on strength parameters of flyash based geopolymer concrete with GGBS. International Research Journal of Engineering and Technology, 2(2), 135–142.
  • Vijai, K., Kumutha, R., & Vishnuram, B. G. (2010). Effect of types of curing on strength of geopolymer concrete. International Journal of Physical Sciences, 5(9), 1419–1423.
  • Vijai, K., Kumutha, R., & Vishnuram, B. G. (2011). Experimental investigations on mechanical properties of geopolymer concrete composites.
  • Vora, P. R., & Dave, U. V. (2013). Parametric studies on compressive strength of geopolymer concrete. Procedia Engineering, 51, 210–219. https://doi.org/10.1016/j.proeng.2013.01.030
  • Wallah, S. E. (2010). Creep behaviour of fly ash-based geopolymer concrete. Civil Engineering Dimension, 12(2), 73–78.
  • Wang, Y., Hu, S., & He, Z. (2019). Mechanical and fracture properties of fly ash geopolymer concrete addictive with calcium aluminate cement. Materials, 12(18), 2982. https://doi.org/10.3390/ma12182982
  • Wang, Y., & Witten, I. H. (1997). Induction of model trees for predicting continuous classes [Paper presentation]. Poster Papers of the 9th European Conference on Machine Learning.
  • Wardhono, A., Gunasekara, C., Law, D. W., & Setunge, S. (2017). Comparison of long term performance between alkali activated slag and fly ash geopolymer concretes. Construction and Building Materials, 143, 272–279. https://doi.org/10.1016/j.conbuildmat.2017.03.153
  • Weng, L., & Sagoe-Crentsil, K. (2007). Dissolution processes, hydrolysis and condensation reactions during geopolymer synthesis: Part I—Low Si/Al ratio systems. Journal of Materials Science, 42(9), 2997–3006. https://doi.org/10.1007/s10853-006-0820-2
  • Wulandari, K. D., Ekaputri, J. J., Kurniawan, S. B., Primaningtyas, W. E., Abdullah, S. R. S., Ismail, N. I., & Imron, M. F. (2021). Effect of microbes addition on the properties and surface morphology of fly ash-based geopolymer paste. Journal of Building Engineering, 33, 101596.
  • Xie, T., & Ozbakkaloglu, T. (2015). Behavior of low-calcium fly and bottom ash-based geopolymer concrete cured at ambient temperature. Ceramics International, 41(4), 5945–5958. https://doi.org/10.1016/j.ceramint.2015.01.031
  • Xu, H., & Van Deventer, J. S. J. (2000). The geopolymerisation of alumino-silicate minerals. International Journal of Mineral Processing, 59(3), 247–266. https://doi.org/10.1016/S0301-7516(99)00074-5
  • Yildirim, G., Sahmaran, M., & Ahmed, H. U. (2015). Influence of hydrated lime addition on the self-healing capability of high-volume fly ash incorporated cementitious composites. Journal of Materials in Civil Engineering, 27(6), 04014187. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001145
  • Zhang, P., Gao, Z., Wang, J., Guo, J., Hu, S., & Ling, Y. (2020). Properties of fresh and hardened fly ash/slag based geopolymer concrete: A review. Journal of Cleaner Production, 270, 122389. https://doi.org/10.1016/j.jclepro.2020.122389
  • Zhang, G., Patuwo, B. E., & Hu, M. Y. (1998). Forecasting with artificial neural networks: The state of the art. International Journal of Forecasting, 14(1), 35–62. https://doi.org/10.1016/S0169-2070(97)00044-7
  • Zhao, R., Yuan, Y., Cheng, Z., Wen, T., Li, J., Li, F., & Ma, Z. J. (2019). Freeze-thaw resistance of class F fly ash-based geopolymer concrete. Construction and Building Materials, 222, 474–483. https://doi.org/10.1016/j.conbuildmat.2019.06.166
  • Zhuang, X. Y., Chen, L., Komarneni, S., Zhou, C. H., Tong, D. S., Yang, H. M., Yu, W. H., & Wang, H. (2016). Fly ash-based geopolymer: Clean production, properties and applications. Journal of Cleaner Production, 125, 253–267. https://doi.org/10.1016/j.jclepro.2016.03.019

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.