189
Views
0
CrossRef citations to date
0
Altmetric
Original Articles

Acoustic emission monitoring of steel fiber reinforced beams under simultaneous corrosion and sustained loading

, &
Pages 1535-1560 | Received 23 Dec 2021, Accepted 05 Jun 2022, Published online: 15 Jun 2022

References

  • Almusallam, A. A., Al-Gahtani, A. S., & Aziz Rasheeduzzafar, A. R. (1996). Effect of reinforcement corrosion on bond strength. Construction and Building Materials, 10(2), 123–129. https://doi.org/10.1016/0950-0618(95)00077-1
  • Abdelrahman, M., ElBatanouny, M. K., Ziehl, P., Fasl, J., Larosche, C. J., & Fraczek, J. (2015). Classification of alkali–silica reaction damage using acoustic emission: A proof-of concept study. Construction and Building Materials, 95, 406–413. https://doi.org/10.1016/j.conbuildmat.2015.07.093
  • ACI 544.5R-10. (2010). “Report on the physical properties and durability of fiber-reinforced concrete,” ACI Committee 544, American Concrete Institute, Farmington Hills, Mich.
  • Aggelis, D. G., Soulioti, D. V., Barkoula, N. M., Paipetis, A. S., & Matikas, T. E. (2012). Influence of fiber chemical coating on the acoustic emission behavior of steel fiber reinforced concrete. Cement and Concrete Composites, 34(1), 62–67. https://doi.org/10.1016/j.cemconcomp.2011.07.003
  • Aggelis, D. G., Soulioti, D. V., Gatselou, E. A., Barkoula, N.-M., & Matikas, T. E. (2013). Monitoring of the mechanical behavior of con-crete with chemically treated steel fibers by acoustic emission. Construction and Building Materials, 48, 1255–1260. https://doi.org/10.1016/j.conbuildmat.2012.06.066
  • Aggelis, D. G., Soulioti, D. V., Sapouridis, N., Barkoula, N. M., Paipetis, A. S., & Matikas, T. E. (2011). Acoustic emission characterization of the fracture process in fibre reinforced concrete. Construction Building Materials, 25(11), 4126–4131. https://doi.org/10.1016/j.conbuildmat.2011.04.049
  • Ahmad, S. (2003). Reinforcement corrosion in concrete structures, its monitoring and service life prediction––a review. Cement and Concrete Composites, 25(4-5), 459–471. https://doi.org/10.1016/S0958-9465(02)00086-0
  • Aldea, C., & Shah, S. (2011). Durability enhancements of cracked concrete by fibers (pp. 1–14). ACI Special Publication.
  • Al-Osta, M. A., Al-Sakkaf, H. A., Sharif, A. M., Ahmad, S., & Baluch, M. H. (2018). Finit element modeling of corroded RC beams using cohesive surface bonding approach. Computers and Concrete, 22, 167–182.
  • Ann, K. Y., & Song, H. W. (2007). Chloride threshold level for corrosion of steel in concrete. Corrosion Science, 49(11), 4113–4133. https://doi.org/10.1016/j.corsci.2007.05.007
  • Balouch, S. U., Forth, J. P., & Granju, J.-L. (2010). Surface corrosion of steel fibre reinforced concrete. Cement and Concrete Research, 40(3), 410–414. https://doi.org/10.1016/j.cemconres.2009.10.001
  • Benavent-Climent, A., Castro, E., & Gallego, A. (2009). AE monitoring for damage assessment of RC exterior beam-column subassemblages subjected to cyclic loading. Structural Health Monitoring, 8(2), 175–189. https://doi.org/10.1177/1475921709102143
  • Bertolini, L. (2008). Steel corrosion and service life of reinforced concrete structures. Structure and Infrastructure Engineering, 4(2), 123–137. https://doi.org/10.1080/15732470601155490
  • Bischoff, P. H. (2003). Tension stiffening and cracking of steel fiber reinforced concrete. Journal of Materials in Civil Engineering, 15(2), 174–182. https://doi.org/10.1061/(ASCE)0899-1561(2003)15:2(174)
  • Buratti, N., Mazzotti, C., & Savoia, M. (2011). Long–term behavior of cracked SFRC elements exposed to chloride solutions (pp. 1–14). ACI Special Publication.
  • Cabrera, J. G. (1996). Deterioration of concrete due to reinforcement steel corrosion. Cement and Concrete Composites, 18(1), 47–59. https://doi.org/10.1016/0958-9465(95)00043-7
  • Carpinteri, A., Lacidogna, G., & Niccolini, G. (2011). Damage analysis of reinforced concrete buildings by the acoustic emission technique. Structural Control and Health Monitoring, 18(6), 660–673. https://doi.org/10.1002/stc.393
  • Carpinteri, A., Lacidogna, J., & Puzzi, S. (2009). From criticality to final collapse: The evolution of “the b-value” from 1.5-1. Chaos, Solitons and Fractals, 41(2), 843–853. https://doi.org/10.1016/j.chaos.2008.04.010
  • CEB-FIP model code. (1990). CEB-FIP model code. Comite Euro-International Du Beton.
  • Colombo, S., Main, I. G., & Forde, M. C. (2003). Assessing damage of reinforced concrete beam using “b-value” analysis of acoustic emission signals. Journal of Materials in Civil Engineering, 15(3), 280–286. https://doi.org/10.1061/(ASCE)0899-1561(2003)15:3(280)
  • Corinaldesi, V., & Moriconi, G. (2004). Durable fiber reinforced self-compacting concrete. Cement and Concrete Research, 34(2), 249–254. https://doi.org/10.1016/j.cemconres.2003.07.005
  • Dinh, H. H., Parra-Montesinos, G. J., & Wight, J. K. (2010). Shear behavior of steel fiber reinforced concrete beams without stirrup reinforcement. ACI Structural Journal, 107(5), 597–606.
  • Du, Y. G., Cullen, M., & Li, C. K. (2013). Structural effects of simultaneous loading and reinforcement corrosion on performance of concrete beams. Construction and Building Materials, 39, 148–152. https://doi.org/10.1016/j.conbuildmat.2012.05.006
  • Duffó, G. S., Morris, W., Raspini, I., & Saragovi, C. (2004). A study of steel rebars embedded in concrete during 65 years. Corrosion Science, 46(9), 2143–2157. https://doi.org/10.1016/j.corsci.2004.01.006
  • E1 Maaddawy, T., Soudki, K., & Topper, T. (2005). Long-term performance of corrosion-damaged reinforced concrete beams. ACI Structural Journal, 102(5), 649.
  • Fu, C. Q., Jin, N. G., Ye, H. L., Jin, X. Y., & Dai, W. (2017). Corrosion characteristics of a 4-year naturally corroded reinforced concrete beam with load-induced transverse cracks. Corrosion Science, 117, 11–23. https://doi.org/10.1016/j.corsci.2017.01.002
  • Geng, J., Sun, Q., Zhang, Y., Cao, L., & Zhang, W. (2017). Studying the dynamic damage failure of concrete based on acoustic emission. Construction and Building Materials, 149, 9–16. https://doi.org/10.1016/j.conbuildmat.2017.05.054
  • Goyal, P., Sharma, S., & Kwatra, N. (2022). Evaluation of damage in GFRP repaired steel fiber reinforced concrete beams using acoustic emission technique. Structural Concrete, 23(2), 907–916. https://doi.org/10.1002/suco.202100408
  • Granju, J., & Balouch, S. (2005). Corrosion of steel fibre reinforced concrete from the cracks. Cement and Concrete Research, 35(3), 572–577. https://doi.org/10.1016/j.cemconres.2004.06.032
  • Grosse, C. U., Reinhardt, H. W., & Finck, F. (2003). Signal-based acoustic emission techniques in civil engineering. Journal of Materials in Civil Engineering, 15(3), 274–279. https://doi.org/10.1061/(ASCE)0899-1561(2003)15:3(274)
  • Grosse, C., & Ohtsu, M. (2008). Acoustic emission testing: Basics for research—applications in civil engineering. Springer-Verlag. https://doi.org/10.1007/978-3-540-69972-9
  • Gutenber, B., & Richer, C. F. (1954). Seismicity of the earth and associated phenomena. Princeton University Press.
  • Idrissi, H., & Limam, A. (2003). Study and characterization by acoustic emission and electrochemical measurements of concrete deterioration caused by reinforcement steel corrosion. NDT & E International, 36(8), 563–569. https://doi.org/10.1016/S0963-8695(03)00064-1
  • Janotka, I., Krajčí, Ľ., Komloš, K., & Frťalová, D. (1989). Chloride corrosion of steel fibre reinforcement in cement mortar. The International Journal of Cement Composites and Lightweight Concrete, 11(4), 221–228. https://doi.org/10.1016/0262-5075(89)90102-4
  • JCMS-III B5706. (2003). Monitoring method for active cracks in concrete by acoustic emission. Federation of Construction Materials Industries.
  • Landis, E. N., Kravchuk, R., & Loshkov, D. (2019). Experimental investigations of internal energy dissipation during fracture of fiber reinforced ultra-high-performance concrete. Frontiers of Structural and Civil Engineering, 13(1), 190–200. https://doi.org/10.1007/s11709-018-0487-1
  • Li, Z., Li, F., Zdunek, A., Landis, E., & Shah, S. (1998). Application of acoustic emission to detection of reinforcing steel corrosion in concrete. ACI Materials Journal, 95(1), 68–76.
  • Ma, Y. F., Guo, Z. Z., Wang, L., & Zhang, J. R. (2017). Experimental investigation of corrosion effect on bond behavior between reinforcing bar and concrete. Construction and Building Materials, 152, 240–249. https://doi.org/10.1016/j.conbuildmat.2017.06.169
  • Mangat, P. S., & Elgarf, M. S. (1999). Flexural strength of concrete beams with corroding reinforcement. ACI Structural Journal, 96, 149–158.
  • Mangat, P. S., & Gurusamy, K. (1987). Long-term properties of steel fibre reinforced marine concrete. Materials and Structures, 20(4), 273–282. https://doi.org/10.1007/BF02485924
  • Martinola, G., Meda, A., Plizzari, G. A., & Rinaldi, Z. (2007). Strengthening of R/C beams with high performance fiber reinforced cementitious composites. In HPFRCC 5-high performance fiber reinforced cement composites (pp. 389–398). Rilem Publication.
  • Martinola, G., Meda, A., Plizzari, G., & Rinaldi, Z. (2010). Strengthening and repair of RC beams with fiber reinforced concrete. Cement and Concrete Composites, 32(9), 731–739. https://doi.org/10.1016/j.cemconcomp.2010.07.001
  • Meda, A., Minelli, F., Plizzari, G., & Riva, P. (2005). Shear behaviour of steel fibre reinforced concrete beams. Materials and Structures, 38(3), 343–351. https://doi.org/10.1007/BF02479300
  • Melchers, R. E., & Li, C. Q. (2006). Phenomenological modeling of reinforcement corrosion in marine environments. ACI Materials Journal, 103(1), 25–32.
  • Mu, R., Xing, P., Yu, J., Wei, L., Zhao, Q., Qing, L., Zhou, J., Tian, W., Gao, S., Zhao, X., & Wang, X. (2019). Investigation on reinforcement of aligned steel fiber on flexural behavior of cement-based composites using acoustic emission signal analysis. Construction and Building Materials, 201, 42–50. https://doi.org/10.1016/j.conbuildmat.2018.12.084
  • Nair, A., & Cai, C. S. (2010). Acoustic emission monitoring of bridges: review and case studies. Engineering Structures, 32(6), 1704–1714. https://doi.org/10.1016/j.engstruct.2010.02.020
  • Ohtsu, M. (1996). The history and development of acoustic emission in concrete engineering. Magazine of Concrete Research, 48(177), 321–330. https://doi.org/10.1680/macr.1996.48.177.321
  • Ohtsu, M., & Tomoda, Y. (2008). Phenomenological model of corrosion process in reinforced concrete identified by acoustic emission. ACI Materials Journal, 105(2), 194–199.
  • Ohtsu, M., Uchida, M., Okamoto, T., & Yuyama, S. (2002). Damage assessment of reinforced concrete beams qualified by acoustic emission. ACI Structural Journal, 99(4), 411–417.
  • PAC. (2007). Physical acoustic corporation, PCI-2 based AE system user’s manual. PAC.
  • Prem, P. R., & Murthy, A. R. (2017). Acoustic emission monitoring of reinforced concrete beams subjected to four-point-bending. Applied Acoustics, 117, 28–38. https://doi.org/10.1016/j.apacoust.2016.08.006
  • Raupach, M. (1996). Chloride-induced macrocell corrosion of steel in concrete—theoretical background and practical consequences. Construction and Building Materials, 10(5), 329–338. https://doi.org/10.1016/0950-0618(95)00018-6
  • Roberge, P. R. (1999). Handbook of corrosion engineering. McGraw-Hill.
  • Rodriguez, J., Ortega, L., & Casal, J. (1997). Load carrying capacity of concrete structures with corroded reinforcement. Construction and Building Materials, 11(4), 239–248. https://doi.org/10.1016/S0950-0618(97)00043-3
  • Saboonchi, H., & Ozevin, D. (2013). MEMS acoustic emission transducers designed with high aspect ratio geometry. Smart Materials and Structures, 22(9), 095006–095014. https://doi.org/10.1088/0964-1726/22/9/095006
  • Shahidan, S., Pulin, R., Muhamad Bunnori, N., & Holford, K. M. (2013). Damage classification in reinforced concrete beam by 30 acoustic emission signal analysis. Construction and Building Materials, 45, 78–86. https://doi.org/10.1016/j.conbuildmat.2013.03.095
  • Sharma, A., Sharma, S., Sharma, S., & Mukherjee, A. (2018). Monitoring invisible corrosion in concrete using a combination of wave propagation techniques. Cement and Concrete Composites, 90, 89–99. https://doi.org/10.1016/j.cemconcomp.2018.03.014
  • Shen, J., Gao, X., Li, B., Du, K., Jin, R., Chen, W., & Xu, Y. (2019). Damage evolution of RC beams under simultaneous reinforcement corrosion and sustained load. Materials, 12(4), 627. https://doi.org/10.3390/ma12040627
  • Shiotani, T. (2001). Application of the AE improved b-value to quantitative evaluation of fracture process in concrete-materials. Journal of Acoustic Emission, 19, 118–133.
  • Shiotani, T., Fujii, K., Aoki, T., & Amou, K. (1994). Evaluation of progressive failure using AE Sources/Improved b-Value on Slope Model Tests. Progress in Acoustic Emission, 7, 529–534.
  • Singh, S., Sharma, S., & Kwatra, N. (2021). Damage progression in RC beam-column joints under cyclic loading using acoustic emission technique. Structural Concrete, 22(6), 3556–3573. 2021; https://doi.org/10.1002/suco.202000713
  • Soffian. (2017). Crack classification of steel fibre RC beams with the aids of acoustic emission technique. International Journal of Advances in Science Engineering and Technology, 5(3).
  • Tayeh, B., Bakar, B. H., Johari, M., Azmi, M., & Voo, Y. (2013). Utilization of ultra-high performance fibre concrete (UHPFC) for rehabilitation. Procedia Engineering, 54, 525–538. https://doi.org/10.1016/j.proeng.2013.03.048
  • Teruzzi, T., Cadoni, E., Frigeri, G., Cangiano, S., & Plizzari, G. A. 2004. Durability aspects of steel fibre reinforced concrete,” in 6th RILEM Symposium on FibreReinforced Cocnretes, 2004, no. September, pp. 625–634.
  • Vidya Sagar, R. (2017). Acoustic emission characteristics of reinforced concrete beams with varying percentage of tension steel reinforcement under flexural loading, Case. Case Studies in Construction Materials, 6, 162–176. https://doi.org/10.1016/j.cscm.2017.01.002
  • Wang, X. H., Gao, X. H., Li, B., & Deng, B. R. (2011). Effect of bond and corrosion within partial length on shear behaviour and local capacity of RC beam. Construction and Building Materials, 25(4), 1812–1823. https://doi.org/10.1016/j.conbuildmat.2010.11.081
  • Xargay, H., Ripani, M., Folino, P., Núñez, N., & Caggiano, A. (2021). Acoustic emission and damage evolution in steel fiber-reinforced concrete beams under cyclic loading. Construction and Building Materials, 274, 121831. https://doi.org/10.1016/j.conbuildmat.2020.121831
  • Xu, Y. (2015). The corrosion characteristics and tensile behavior of reinforcement under coupled carbonation and static loading. Materials (Basel, Switzerland), 8(12), 8561–8577. https://doi.org/10.3390/ma8125479
  • Yang, S., Li, K., & Li, C. (2018). Numerical determination of concrete crack width for corrosion-affected concrete structures. Computers & Structures, 207, 75–82. https://doi.org/10.1016/j.compstruc.2017.07.016
  • Yin, S. P., Na, M. W., Yu, Y. L., & Wu, J. (2017). Research on the flexural performance of RC beams strengthened with TRC under the coupling action of load and marine environment.Construction and Building Materials, 132, 251–261. https://doi.org/10.1016/j.conbuildmat.2016.12.001
  • Yoon, D. J., Weiss, W. J., & Shah, S. (2000). Assessing damage in corroded reinforced concrete using acoustic emission. Journal of Engineering Mechanics, 126(3), 273–283. https://doi.org/10.1061/(ASCE)0733-9399(2000)126:3(273)
  • Yuyama, S., & Nishida, T. (2003). Acoustic emission evaluation of corrosion damages in buried pipes of refinery. Journal of Acoustic Emission, 21(1), 187–196.
  • Zhang, R., Castel, A., & François, R. (2009). The corrosion pattern of reinforcement and its influence on serviceability of reinforced concrete members in chloride environment. Cement and Concrete Research, 39(11), 1077–1086. https://doi.org/10.1016/j.cemconres.2009.07.025
  • Zhang, R., Castel, A., & François, R. (2010). Concrete cover cracking with reinforcement corrosion of RC beam during chloride-induced corrosion process. Cement and Concrete Research, 40(3), 415–425. https://doi.org/10.1016/j.cemconres.2009.09.026
  • Zhu, W. J., Francois, R., Coronelli, D., & Cleland, D. (2013). Effect of corrosion of reinforcement on the mechanical behaviour of highly corroded RC beams. Engineering Structures, 56, 544–554. https://doi.org/10.1016/j.engstruct.2013.04.017
  • Zhu, W. J., Francois, R., Poon, C. S., & Dai, J. G. (2017). Influences of corrosion degree and corrosion morphology on the ductility of steel reinforcement. Construction and Building Materials, 148, 297–306. https://doi.org/10.1016/j.conbuildmat.2017.05.079
  • Zhu, X. J., & Zi, G. (2017). A 2D mechano-chemical model for the simulation of reinforcement corrosion and concrete damage. Construction and Building Materials, 137, 330–344. https://doi.org/10.1016/j.conbuildmat.2017.01.103
  • Ziehl, P. (2008). Applications of acoustic emission evaluation for civil infrastructure [Paper presentation]. Proceedings, Smart Structures and Materials, Nondestructive Evaluation and Health Monitoring, Society of Photo-Optical Instrumentation Engineers, Bellingham, WA, 693401. https://doi.org/10.1117/12.779069

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.