565
Views
5
CrossRef citations to date
0
Altmetric
Original Articles

A novel true triaxial test device with a high-temperature module for thermal-mechanical property characterization of hard rocks

, , , &
Pages 1697-1714 | Received 01 Mar 2022, Accepted 15 Jun 2022, Published online: 07 Jul 2022

References

  • Akdag, S., Karakus, M., Taheri, A., Nguyen, G., & Manchao, H. (2018). Effects of thermal damage on strain burst mechanism for brittle rocks under true-triaxial loading conditions. Rock Mechanics and Rock Engineering, 51(6), 1657–1682. https://doi.org/10.1007/s00603-018-1415-3
  • Armand, G., Bumbieler, F., Conil, N., de la Vaissière, R., Bosgiraud, J.-M., & Vu, M.-N. (2017). Main outcomes from in situ THM experiments programme to demonstrate feasibility of radioactive HL-ILW disposal in the Callovo-Oxfordian claystone. Journal of Rock Mechanics and Geotechnical Engineering, 9(3), 415–427. https://doi.org/10.1016/j.jrmge.2017.03.004
  • Chang, C. D., & Haimson, B. (2000). True triaxial strength and deformability of the German Continental Deep Drilling Program (KTB) deep hole amphibolite. Journal of Geophysical Research: Solid Earth, 105(B8), 18999–19013. https://doi.org/10.1029/2000JB900184
  • Chen, G., Li, T., Li, G., Qin, C., & He, Y. (2018). Influence of temperature on the brittle failure of granite in deep tunnels determined from triaxial unloading tests. ]. European Journal of Environmental and Civil Engineering, 22(sup1), s269–s85. https://doi.org/10.1080/19648189.2017.1369461
  • Chen, Y.-L., Ni, J., Shao, W., & Azzam, R. (2012). Experimental study on the influence of temperature on the mechanical properties of granite under uni-axial compression and fatigue loading. International Journal of Rock Mechanics & Mining Sciences, 56, 62–66. https://doi.org/10.1016/j.ijrmms.2012.07.026
  • Deng, L.-C., Li, X.-Z., Wang, Y.-C., Wu, Y., Huang, Z., & Jiang, C-l. (2022). Effect of temperature on macroscopic and microscopic properties of sandstone from Qidong coal mine. Rock Mechanics and Rock Engineering, 55(1), 71–20. https://doi.org/10.1007/s00603-021-02679-6
  • Descamps, F., Ramos da Silva, M., Schroeder, C., Verbrugge, J.-C., & Tshibangu, J.-P. (2012). Limiting envelopes of a dry porous limestone under true triaxial stress states. International Journal of Rock Mechanics and Mining Sciences, 56, 88–99. https://doi.org/10.1016/j.ijrmms.2012.07.013
  • Ding, Q.-L., Ju, F., Mao, X.-B., Ma, D., Yu, B.-Y., & Song, S.-B. (2016). Experimental investigation of the mechanical behavior in unloading conditions of sandstone after high-temperature treatment. Rock Mechanics and Rock Engineering, 49(7), 2641–2653. https://doi.org/10.1007/s00603-016-0944-x
  • Dwivedi, R. D., Goel, R. K., Prasad, V. V. R., & Sinha, A. (2008). Thermo-mechanical properties of Indian and other granites. International Journal of Rock Mechanics and Mining Sciences, 45(3), 303–315. https://doi.org/10.1016/j.ijrmms.2007.05.008
  • Feng, X.-T., Haimson, B., Li, X., Chang, C., Ma, X., Zhang, X., Ingraham, M., & Suzuki, K. (2019). ISRM suggested method: Determining deformation and failure characteristics of rocks subjected to true triaxial compression. Rock Mechanics and Rock Engineering, 52(6), 2011–2020. https://doi.org/10.1007/s00603-019-01782-z
  • Feng, X.-T., Zhang, X., Kong, R., & Wang, G. (2016). A novel Mogi type true triaxial testing apparatus and its use to obtain complete stress–strain curves of hard rocks. Rock Mechanics and Rock Engineering, 49(5), 1649–1662. https://doi.org/10.1007/s00603-015-0875-y
  • Feng, X.-T., Zhao, J., Zhang, X., & Kong, R. (2018). A novel true triaxial apparatus for studying the time-dependent behaviour of hard rocks under high stress. Rock Mechanics and Rock Engineering, 51(9), 2653–2667. https://doi.org/10.1007/s00603-018-1516-z
  • Frash, L. P., & Gutierrez, M. (2012). Development of a new temperature controlled true-triaxial apparatus for simulating enhanced geothermal systems (EGS) at the laboratory scale. Proceedings of the 37th Workshop on Geothermal Reservoir Engineering, Stanford University.
  • Gabova, A., Chekhonin, E., Popov, Y., Savelev, E., Romushkevich, R., Popov, E., & Kozlova, E. (2020). Experimental investigation of thermal expansion of organic-rich shales. International Journal of Rock Mechanics and Mining Sciences, 132, 104398. https://doi.org/10.1016/j.ijrmms.2020.104398
  • Heuze, F., E. (1983). High-temperature mechanical, physical and thermal properties of granitic rocks—a review; proceedings of the. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 20(1), 3–10. https://doi.org/10.1016/0148-9062(83)91609-1
  • Ingraham, M. D., Issen, K. A., & Holcomb, D. J. (2013). Response of Castlegate sandstone to true triaxial states of stress. Journal of Geophysical Research: Solid Earth, 118(2), 536–552. https://doi.org/10.1002/jgrb.50084
  • Kwasniewski, M., Takahashi, M., & Li, X. (2003). Volume changes in sandstone under true triaxial compression conditions. Proceedings of the 10th ISRM Congress, International Society for Rock Mechanics and Rock Engineering.
  • Lee, H., & Haimson, B. C. (2011). True triaxial strength, deformability, and brittle failure of granodiorite from the San Andreas fault observatory at depth. International Journal of Rock Mechanics and Mining Sciences, 48(7), 1199–1207. https://doi.org/10.1016/j.ijrmms.2011.08.003
  • Li, M., Yin, G., Xu, J., Li, W., Song, Z., & Jiang, C. (2016). A novel true triaxial apparatus to study the geomechanical and fluid flow aspects of energy exploitations in geological formations. Rock Mechanics and Rock Engineering, 49(12), 4647–4659. https://doi.org/10.1007/s00603-016-1060-7
  • Li, N., Zhang, S., Wang, H., Wu, S., Zou, Y., Ma, X., & Zhou, T. (2021). Thermal shock effect on acoustic emission response during laboratory hydraulic fracturing in Laizhou granite. Rock Mechanics and Rock Engineering, 54(9), 4793–4807. https://doi.org/10.1007/s00603-021-02568-y
  • Liu, S., & Xu, J. Y. (2013). Study on dynamic characteristics of marble under impact loading and high temperature. International Journal of Rock Mechanics and Mining Sciences, 62, 51–58. https://doi.org/10.1016/j.ijrmms.2013.03.014
  • Liu, S., Xu, J. Y., & Liu, Z. Q. (2013). Temperature effect on strength and damage property of rock mass. Journal of Mining & Safety Engineering, 30(4), 583–588.
  • Liu, Z., Shao, J., Xie, S., Conil, N., & Talandier, J. (2019). Mechanical behavior of claystone in lateral decompression test and thermal effect. Rock Mechanics and Rock Engineering, 52(2), 321–334. https://doi.org/10.1007/s00603-018-1573-3
  • Liu, Z., Shao, J., Zha, W., Xie, S., Bourbon, X., & Camps, G. (2021a). Shear strength of interface between high-performance concrete and claystone in the context of a French radioactive waste repository project. Géotechnique, 71(6), 534–547. https://doi.org/10.1680/jgeot.19.P.098
  • Liu, Z., Wang, C., & Zhou, H. (2021b). A true triaxial time-dependent test system with two rigid and one flexible loading frame for rock under real-time high temperature and high pressure and its application. Chinese Journal of Rock Mechanics and Engineering, 40(12), 2477–2486.
  • Lu, S. M. (2018). A global review of enhanced geothermal system (EGS). Renewable and Sustainable Energy Reviews, 81, 2902–2921. https://doi.org/10.1016/j.rser.2017.06.097
  • Ma, X., Wang, G., Hu, D., Liu, Y., Zhou, H., & Liu, F. (2020). Mechanical properties of granite under real-time high temperature and three-dimensional stress. International Journal of Rock Mechanics and Mining Sciences, 136, 104521. https://doi.org/10.1016/j.ijrmms.2020.104521
  • Masri, M., Sibai, M., Shao, J. F., & Mainguy, M. (2014). Experimental investigation of the effect of temperature on the mechanical behavior of Tournemire shale. International Journal of Rock Mechanics and Mining Sciences, 70, 185–191. https://doi.org/10.1016/j.ijrmms.2014.05.007
  • Meng, Q. -B., Liu, J.-F., Pu, H., Yu, L. -Y., Wu, J. -Y., & Wang, C. -K. (2021). Mechanical properties of limestone after high-temperature treatment under triaxial cyclic loading and unloading conditions. Rock Mechanics and Rock Engineering, 54(12), 6413–6425. https://doi.org/10.1007/s00603-021-02638-1
  • Miao, S., Pan, P.-Z., Zhao, X., Shao, C., & Yu, P. (2021). Experimental study on damage and fracture characteristics of Beishan granite subjected to high-temperature treatment with DIC and AE techniques. Rock Mechanics and Rock Engineering, 54(2), 721–743. https://doi.org/10.1007/s00603-020-02271-4
  • Mogi, K. (1970). Effect of the triaxial stress system on rock failure. Rock Mechanics in Japan, 1, 53–55.
  • Mogi, K. (1971). Fracture and flow of rocks under high triaxial compression. Journal of Geophysical Research, 76(5), 1255–1269. https://doi.org/10.1029/JB076i005p01255
  • Mogi, K. (1977). Dilatancy of rocks under general triaxial stress states with special reference to earthquake precursors. Journal of Physics of the Earth, 25(Supplement), S203–S217. https://doi.org/10.4294/jpe1952.25.Supplement_S203
  • Mohamadi, M., & Wan, R. G. (2016). Strength and post-peak response of Colorado shale at high pressure and temperature. International Journal of Rock Mechanics and Mining Sciences, 84, 34–46. https://doi.org/10.1016/j.ijrmms.2015.12.012
  • Moslehy, A., Alshibli, K. A., & Truster, T. J. (2022). Influence of temperature and crystal orientation on compressive strength of rock salt using a newly developed high-pressure thermal cell. Rock Mechanics and Rock Engineering, 55(1), 91–18. https://doi.org/10.1007/s00603-021-02655-0
  • Nasseri, M. H. B., Goodfellow, S. D., Lombos, L., & Young, R. P. (2014). 3-D transport and acoustic properties of Fontainebleau sandstone during true-triaxial deformation experiments. International Journal of Rock Mechanics and Mining Sciences, 69, 1–18. https://doi.org/10.1016/j.ijrmms.2014.02.014
  • Orlander, T., Andreassen, K. A., & Fabricius, I. L. (2021). Effect of temperature on stiffness of sandstones from the deep North Sea Basin. Rock Mechanics and Rock Engineering, 54(1), 255–288. https://doi.org/10.1007/s00603-020-02251-8
  • Su, G., Chen, Z., Ju, J. W., & Jiang, J. (2017). Influence of temperature on the strainburst characteristics of granite under true triaxial loading conditions. Engineering Geology, 222, 38–52. https://doi.org/10.1016/j.enggeo.2017.03.021
  • Sun, Q., Zhang, W., Xue, L., Zhang, Z., & Su, T. (2015). Thermal damage pattern and thresholds of granite. Environmental Earth Sciences, 74(3), 2341–2349. https://doi.org/10.1007/s12665-015-4234-9
  • Takahashi, M., & Koide, H. (2000). Effect of the intermediate principal stress on strength and deformation behavior of sedimentary rocks at the depth shallower than. Proceedings of the International Symposium on Rock at Great Depth, 1989.
  • Tian, W.-L., Yang, S.-Q., Elsworth, D., Wang, J.-G., & Li, X.-Z. (2020). Permeability evolution and crack characteristics in granite under treatment at high temperature. International Journal of Rock Mechanics and Mining Sciences, 134, 104461. https://doi.org/10.1016/j.ijrmms.2020.104461
  • Vagnon, F., Colombero, C., Colombo, F., Comina, C., Ferrero, A. M., Mandrone, G., & Vinciguerra, S. C. (2019). Effects of thermal treatment on physical and mechanical properties of Valdieri Marble-NW Italy. International Journal of Rock Mechanics and Mining Sciences, 116, 75–86. https://doi.org/10.1016/j.ijrmms.2019.03.006
  • Wang, F., Frühwirt, T., & Konietzky, H. (2020). Influence of repeated heating on physical-mechanical properties and damage evolution of granite. International Journal of Rock Mechanics and Mining Sciences, 136, 104514. https://doi.org/10.1016/j.ijrmms.2020.104514
  • Wang, G., Yang, D., Liu, S., Fu, M., & Wang, L. (2021). Experimental study on the anisotropic mechanical properties of oil shales under real-time high-temperature conditions. Rock Mechanics and Rock Engineering, 54(12), 6565–6519. https://doi.org/10.1007/s00603-021-02624-7
  • Wang, G-l., Zhang, W., Ma, F., Lin, W-j., Liang, J-y., & Zhu, X. (2018). Overview on hydrothermal and hot dry rock researches in China. China Geology, 1(2), 273–285. https://doi.org/10.31035/cg2018021
  • Wang, K., Liu, Z., Zeng, T., Wang, F., Shen, W., & Shao, J. (2022). Performance of enhanced geothermal system with varying injection-production parameters and reservoir properties. Applied Thermal Engineering, 207, 118160. https://doi.org/10.1016/j.applthermaleng.2022.118160
  • Wang, W., Xie, S. Y., & Xu, W. Y. (2013). Experimental study and numerical modelling of thermo-mechanical behaviour of Tournemire argillite. European Journal of Environmental and Civil Engineering, 17(supp 1), s174–s86. https://doi.org/10.1080/19648189.2013.834593
  • Xu, X. L., Gao, F., & Zhang, Z. Z. (2015). Experimental study of the effect of loading rates on mechanical properties of granite at real-time high temperature. Rock and Soil Mechanics, 36(8), 2184–2192.
  • Yang, F.,Wang, G.,Hu, D.,Zhou, H., &Tan, X. (2022). Influence of water-rock interaction on permeability and heat conductivity of granite under high temperature and pressure conditions. Geothermics, 100, 102347. https://doi.org/10.1016/j.geothermics.2022.102347
  • Yao, M., Rong, G., Zhou, C., & Peng, J. (2016). Effects of thermal damage and confining pressure on the mechanical properties of coarse marble. Rock Mechanics and Rock Engineering, 49(6), 2043–2054. https://doi.org/10.1007/s00603-016-0916-1
  • Ye, G., Nishimura, T., & Zhang, F. (2015). Experimental study on shear and creep behaviour of green tuff at high temperatures. International Journal of Rock Mechanics and Mining Sciences, 79, 19–28. https://doi.org/10.1016/j.ijrmms.2015.08.005
  • Zha, W., Zhou, H., Liu, Z., Shao, J., Zhang, Y., & Hua, X. (2021). Experimental study of gas permeability evolution in tight sandstone with damage and cracking along various stress loading paths. Bulletin of Engineering Geology and the Environment, 80(10), 7847–7863. https://doi.org/10.1007/s10064-021-02409-w
  • Zhan, H.,Dong, W.,Chen, S.,Hu, D.,Zhou, H., &Luo, J. (2021). Improved test method for convection heat transfer characteristics of carbonate fractures after acidizing etching. Advances in Geo-Energy Research, 5(4), 376–385. https://doi.org/10.46690/ager.2021.04.04
  • Zhang, W., Sun, Q., Zhu, S., & Wang, B. (2017). Experimental study on mechanical and porous characteristics of limestone affected by high temperature. Applied Thermal Engineering, 110, 356–362. https://doi.org/10.1016/j.applthermaleng.2016.08.194
  • Zhao, F., Shi, Z. M., & Sun, Q. (2021). Fracture mechanics behavior of jointed granite exposed to high temperatures. Rock Mechanics and Rock Engineering, 54(5), 2183–2196. https://doi.org/10.1007/s00603-021-02393-3
  • Zhou, H. Y., Li, Y. P., Feng, T., Wang, D., Zhang, G. Z., & Liu, Z. B. (2021). Effect of high temperature and confining pressure on the mechanical behavior of granite from Batang fault zone. IOP Conference Series: Earth and Environmental Science, 861(5), 052104. https://doi.org/10.1088/1755-1315/861/5/052104

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.