133
Views
0
CrossRef citations to date
0
Altmetric
Original Articles

Physico-mechanical and thermal properties of chemical admixture modified bamboo reinforced gypsum-cement composite

, , &
Pages 1730-1746 | Received 23 Mar 2022, Accepted 21 Jun 2022, Published online: 01 Jul 2022

References

  • Abuh, N., & Umoh, A. (2015). Palm kernel fruit fiber reinforced gypsum-cement based wall panels: It’s physical and mechanical characteristics. Pollution, 1(2), 117–126.
  • Akinyemi, B. A., Bamidele, A., & Joel, E. (2019a). Response of coir fibre reinforced cement composites to water repellent chemical additive and microwave accelerated curing. Cellulose, 26(8), 4987–4999. https://doi.org/10.1007/s10570-019-02414-z
  • Akinyemi, B. A., Bamidele, A., & Oluwanifemi, A. (2019b). Influence of water repellent chemical additive and different curing regimes on dimensional stability and strength of earth bricks from termite mound-clay. Heliyon, 5(1), e01182. https://doi.org/10.1016/j.heliyon.2019.e01182
  • Akinyemi, B. A., & Dai, C. (2020). Development of banana fibers and wood bottom ash modified cement mortars. Construction and Building Materials, 241, 118041. https://doi.org/10.1016/j.conbuildmat.2020.118041
  • Akinyemi, B., & Omoniyi, T. (2018). Properties of latex polymer modified mortars reinforced with waste bamboo fibers from construction waste. Buildings, 8(11), 149. https://doi.org/10.3390/buildings8110149
  • Akinyemi, A. B., Omoniyi, E. T., & Onuzulike, G. (2020). Effect of microwave assisted alkali pretreatment and other pretreatment methods on some properties of bamboo fibre reinforced cement composites. Construction and Building Materials, 245, 118405. https://doi.org/10.1016/j.conbuildmat.2020.118405
  • Alaba, P. A., Popoola, S. I., Abnisal, F., Lee, C. S., Ohunakin, O. S., Adetiba, E., Akanle, M. B., Abdul Patah, M. F., Atayero, A. A. A., & Wan Daud, W. M. A. (2020). Thermal decomposition of rice husk: A comprehensive artificial intelligence predictive model. Journal of Thermal Analysis and Calorimetry, 140(4), 1811–1823. https://doi.org/10.1007/s10973-019-08915-0
  • Alcaraz, J. S., Belda, I. M., Sanchis, E. J., & Borrell, J. M. G. (2019). Mechanical properties of plaster reinforced with yute fabrics. Composites Part B: Engineering, 178, 107390. https://doi.org/10.1016/j.compositesb.2019.107390
  • Aldykiewicz, Jr., A. J., Berke, N. S., Callander, I., & Bentur, A. (2006). Use of concrete admixtures to produce “waterproof” concrete. In 8th CANMET/ACI International Conference on Superplasticizers and Other Chemical Admixtures in Concrete—Supplementary Papers, October 29–November 1, 2006, compiled by M. Venturino, pp. 53–68.
  • Álvarez, M., Ferrández, D., Morón, C., & Atanes-Sánchez, E. (2021). Characterization of a new lightened gypsum-based material reinforced with fibers. Materials, 14(5), 1203. https://doi.org/10.3390/ma14051203
  • An, Z. Z., Zhou, Z. Y., Xia, Y. M., Xin, D., Hu, X. Y., & Fang, Y. (2019). Modulating water absorption of hardened gypsum plaster with enhanced mechanical strengths by molecular modification of polyvinyl alcohol. Journal of Materials in Civil Engineering, 31(11), 06019014. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002915
  • Apay, A. C., Özgan, E., Turgay, T., & Akyol, K. (2016). Investigation and modelling the effects of water proofing and water repellent admixtures dosage on the permeability and compressive strengths of concrete. Construction and Building Materials, 113, 698–711. https://doi.org/10.1016/j.conbuildmat.2016.03.110
  • Arikan, M. E., & Sobolev, K. (2002). The optimization of a gypsum-based composite material. Cement and Concrete Research, 32(11), 1725–1728. https://doi.org/10.1016/S0008-8846(02)00858-X
  • ASTM C109/C109M - 20b. Standard test method for compressive strength of hydraulic cement mortars 50 mm cube specimens.
  • ASTM D1037. (2012). Standard test methods for evaluating properties of woodbase fibre and particle panel materials.
  • Azarsa, P., Gupta, R., & Biparva, A. (2020). Inventive microstructural and durability investigation of cementitious composites involving crystalline waterproofing admixtures and portland limestone cement. Materials, 13(6), 1425. https://doi.org/10.3390/ma13061425
  • Bao, J., Li, S., Zhang, P., Xue, S., Cui, Y., & Zhao, T. (2020). Influence of exposure environments and moisture content on water repellency of surface impregnation of cement-based materials. Journal of Materials Research and Technology, 9(6), 12115–12125. https://doi.org/10.1016/j.jmrt.2020.08.046
  • Bouzit, S., Laasri, S., Taha, M., Laghzizil, A., Hajjaji, A., Merli, F., & Buratti, C. (2019). Characterization of natural gypsum materials and their composites for building applications. Applied Sciences, 9(12), 2443. https://doi.org/10.3390/app9122443
  • Chen, J. J., Thomas, J. J., Taylor, H. F., & Jennings, H. M. (2004). Solubility and structure of calcium silicate hydrate. Cement and Concrete Research, 34(9), 1499–1519. https://doi.org/10.1016/j.cemconres.2004.04.034
  • Deepa, B., Abraham, E., Cherian, B. M., Bismarck, A., Blaker, J. J., Pothan, L. A., Leao, A. L., de Souza, S. F., & Kottaisamy, M. (2011). Structure, morphology and thermal characteristics of banana nano fibers obtained by steam explosion. Bioresource Technology, 102(2), 1988–1997. https://doi.org/10.1016/j.biortech.2010.09.030
  • Drochytka, R., Ledl, M., Bydzovsky, J., Zizkova, N., & Bester, J. (2019). Use of secondary crystallization and fly ash in waterproofing materials to increase concrete resistance to aggressive gases and liquids. Advances in Civil Engineering, 2019, 1–12. https://doi.org/10.1155/2019/7530325
  • Elsalamawy, M., Mohamed, A. R., & Abdel-latif, E. A. (2020). Performance of crystalline forming additive materials in concrete. Construction and Building Materials, 230, 117056. https://doi.org/10.1016/j.conbuildmat.2019.117056
  • Falchi, L., Varin, C., Toscano, G., & Zendri, E. (2015). Statistical analysis of the physical properties and durability of water-repellent mortars made with limestone cement, natural hydraulic lime and pozzolana-lime. Construction and Building Materials, 78, 260–270. https://doi.org/10.1016/j.conbuildmat.2014.12.109
  • Falliano, D., De Domenico, D., Ricciardi, G., & Gugliandolo, E. (2019). Improving the flexural capacity of extrudable foamed concrete with glass-fiber bi-directional grid reinforcement: An experimental study. Composite Structures, 209, 45–59. https://doi.org/10.1016/j.compstruct.2018.10.092
  • Ferrara, L., Krelani, V., & Carsana, M. (2014). A “fracture testing” based approach to assess crack healing of concrete with and without crystalline admixtures. Construction and Building Materials, 68, 535–551. https://doi.org/10.1016/j.conbuildmat.2014.07.008
  • Gencel, O., del Coz Diaz, J. J., Sutcu, M., Koksal, F., Rabanal, F. P. Á., & Martinez-Barrera, G. (2016). A novel lightweight gypsum composite with diatomite and polypropylene fibers. Construction and Building Materials, 113, 732–740. https://doi.org/10.1016/j.conbuildmat.2016.03.125
  • Geng, Y., Li, S., Hou, D., Zhang, W., Jin, Z., Li, Q., & Luo, J. (2020). Fabrication of superhydrophobicity on foamed concrete surface by GO/silane coating. Materials Letters, 265, 127423. https://doi.org/10.1016/j.matlet.2020.127423
  • Gomes, C. E. M., Sousa, A. K. D., Araujo, M. E. D. S. O., Ferreira, S. B., & Fontanini, P. (2019). Mechanical and microstructural properties of redispersible polymer-gypsum composites. Materials Research, 22(3) https://doi.org/10.1590/1980-5373-mr-2018-0119
  • Hamza, S., Saad, H., Charrier, B., Ayed, N., & Charrier-El Bouhtoury, F. (2013). Physico-chemical characterization of Tunisian plant fibers and its utilization as reinforcement for plaster based composites. Industrial Crops and Products, 49, 357–365. https://doi.org/10.1016/j.indcrop.2013.04.052
  • Hasan, K. F., Horváth, P. G., & Alpar, T. (2021). Development of lignocellulosic fiber reinforced cement composite panels using semi-dry technology. Cellulose, 28(6), 3631–3645. https://doi.org/10.1007/s10570-021-03755-4
  • Hassett, D. J., McCarthy, G. J., Kumarathasan, P., & Pflughoeft-Hassett, D. (1990). Synthesis and characterization of selenate and sulfate-selenate ettringite structure phases. Materials Research Bulletin, 25(11), 1347–1354. https://doi.org/10.1016/0025-5408(90)90216-O
  • Horgnies, M., Chen, J. J., & Bouillon, C. (2013). Overview about the use of Fourier transform infrared spectroscopy to study cementitious materials. WIT Transactions on Engineering Sciences, 77, 251–262.
  • Iucolano, F., Boccarusso, L., & Langella, A. (2019). Hemp as eco-friendly substitute of glass fibres for gypsum reinforcement: Impact and flexural behaviour. Composites Part B: Engineering, 175, 107073. https://doi.org/10.1016/j.compositesb.2019.107073
  • Iucolano, F., Caputo, D., Leboffe, F., & Liguori, B. (2015). Mechanical behavior of plaster reinforced with abaca fibers. Construction and Building Materials, 99, 184–191. https://doi.org/10.1016/j.conbuildmat.2015.09.020
  • Iucolano, F., Liguori, B., Aprea, P., & Caputo, D. (2018). Evaluation of bio-degummed hemp fibers as reinforcement in gypsum plaster. Composites Part B: Engineering, 138, 149–156. https://doi.org/10.1016/j.compositesb.2017.11.037
  • Izaguirre, A., Lanas, J., & Alvarez, J. I. (2009). Effect of water-repellent admixtures on the behaviour of aerial lime-based mortars. Cement and Concrete Research, 39(11), 1095–1104. https://doi.org/10.1016/j.cemconres.2009.07.026
  • Kochova, K., Caprai, V., Gauvin, F., Schollbach, K., & Brouwers, H. J. H. (2020). Investigation of local degradation in wood stands and its effect on cement wood composites. Construction and Building Materials, 231, 117201. https://doi.org/10.1016/j.conbuildmat.2019.117201
  • Li, S., Zhang, W., Liu, J., Hou, D., Geng, Y., Chen, X., Gao, Y., Jin, Z., & Yin, B. (2019). Protective mechanism of silane on concrete upon marine exposure. Coatings, 9(9), 558. https://doi.org/10.3390/coatings9090558
  • Mettler Toledo. (2010). Thermal analysis application. determination of calcium sulfate dihydrate and hemihydrate in cement. No. UC 264.
  • Nishiyama, Y., Langan, P., & Chanzy, H. (2002). Crystal structure and hydrogen-bonding system in cellulose Iβ from synchrotron X-ray and neutron fiber diffraction. Journal of the American Chemical Society, 124(31), 9074–9082. https://doi.org/10.1021/ja0257319
  • Ouakarrouch, M., El Azhary, K., Laaroussi, N., Garoum, M., & Kifani-Sahban, F. (2020). Thermal performances and environmental analysis of a new composite building material based on gypsum plaster and chicken feathers waste. Thermal Science and Engineering Progress, 19, 100642. https://doi.org/10.1016/j.tsep.2020.100642
  • Palha, F., Pereira, A., de Brito, J., & Silvestre, J. D. (2012). Effect of water on the degradation of Gypsum plaster coatings: Inspection, diagnosis, and repair. Journal of Performance of Constructed Facilities, 26(4), 424–432. https://doi.org/10.1061/(ASCE)CF.1943-5509.0000258
  • Parres, F., Crespo-Amorós, J. E., & Nadal-Gisbert, A. (2009). A. Mechanical properties analysis of plaster reinforced with fiber and microfiber obtained from shredded tires. Construction and Building Materials, 23(10), 3182–3188. https://doi.org/10.1016/j.conbuildmat.2009.06.040
  • Pervyshin, G. N., Yakovlev, G. I., Gordina, A. F., Keriene, J., Polyanskikh, I. S., Fischer, H.-B., Rachimova, N. R., & Buryanov, A. F. (2017). Water-resistant gypsum compositions with man-made modifiers. Procedia Engineering, 172, 867–874. https://doi.org/10.1016/j.proeng.2017.02.087
  • Samide, A., Tutunaru, B., Merişanu, C., & Cioateră, N. (2020). Thermal analysis: An effective characterization method of polyvinyl acetate films applied in corrosion inhibition field. Journal of Thermal Analysis and Calorimetry, 142(5), 1825–1834. https://doi.org/10.1007/s10973-020-09489-y
  • Segal, L. G. J. M. A., Creely, J. J., Martin, A. E., Jr., & Conrad, C. M. (1959). An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer. Textile Research Journal, 29(10), 786–794. https://doi.org/10.1177/004051755902901003
  • Shawia, N. B., Jabber, M. A., & Mamouri, A. F. (2014). Mechanical and physical properties of natural fiber cement board for building partitions. Physical Sciences Research International, 2(3), 49–53.
  • Silva, B. A., Pinto, A. F., Gomes, A., & Candeias, A. (2020). Comparative analysis of the behaviour of integral water-repellents on lime mortars. Construction and Building Materials, 261, 120344. https://doi.org/10.1016/j.conbuildmat.2020.120344
  • Singh, H., & Gupta, R. (2020). Influence of cellulose fiber addition on self-healing and water permeability of concrete. Case Studies in Construction Materials, 12, e00324. https://doi.org/10.1016/j.cscm.2019.e00324
  • Skujans, J., Vulans, A., Iljins, U., & Aboltins, A. (2007). Measurements of heat transfer of multi-layered wall construction with foam gypsum. Applied Thermal Engineering, 27(7), 1219–1224. https://doi.org/10.1016/j.applthermaleng.2006.02.047
  • Tian, Y., Wang, P., Zhao, T., Ma, Z., Jin, Z., & Zhao, H. (2019). Influence of water-repellent treatment with silicon resin on properties of concrete. Advances in Materials Science and Engineering, 2019, 1–12. https://doi.org/10.1155/2019/5743636
  • Tkach, E. V., Semenov, V. S., Tkach, S. A., & Rozovskaya, T. A. (2015). Highly effective water-repellent concrete with improved physical and technical properties. Procedia Engineering, 111, 763–769. https://doi.org/10.1016/j.proeng.2015.07.143
  • Vimmrova, A., Keppert, M., Svoboda, L., & Černý, R. (2011). Lightweight gypsum composites: Design strategies for multi-functionality. Cement and Concrete Composites, 33(1), 84–89. https://doi.org/10.1016/j.cemconcomp.2010.09.011
  • Zhang, Y., Li, S., Zhang, W., Chen, X., Hou, D., Zhao, T., & Li, X. (2019). Preparation and mechanism of graphene oxide/isobutyltriethoxysilane composite emulsion and its effects on waterproof performance of concrete. Construction and Building Materials, 208, 343–349. https://doi.org/10.1016/j.conbuildmat.2019.03.015
  • Zizkova, N., Nevrivova, L., Ledl, M., & Keprdova, S. (2018). Mortars with crystalline additive in aggressive environments [Paper presentation]. IOP Conference Series: Materials Science and Engineering, (Vol. 385, p. 012066). IOP Publishing. https://doi.org/10.1088/1757-899X/385/1/012066

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.