307
Views
5
CrossRef citations to date
0
Altmetric
Original Articles

Comparative analysis of soft computing techniques in predicting the compressive and tensile strength of seashell containing concrete

, , & ORCID Icon
Pages 1853-1875 | Received 07 Jul 2021, Accepted 11 Jul 2022, Published online: 22 Jul 2022

References

  • Adewuyi, A. P., & Adegoke, T. (2008). Exploratory study of periwinkle shells as coarse aggregates in concrete works. ARPN Journal of Engineering and Applied Sciences, 3(6), 1–5.
  • Ahmad A., FarooqF., Ostrowski K. A., Sliwa-Wieczorek K., & Czarnecki S. (2021). Application of novel machine learning techniques for predicting the surface chloride concentration in concrete containing waste material. Materials, 14(9), 2297. https://doi.org/10.3390/ma14092297
  • Alidoust, P., Keramati, M., Hamidian, P., Amlashi, A. T., Gharehveran, M. M., & Behnood, A. (2021). Prediction of the shear modulus of municipal solid waste (MSW): An application of machine learning techniques. Journal of Cleaner Production, 303, 127053. https://doi.org/10.1016/j.jclepro.2021.127053
  • Amlashi, A. T., Abdollahi, S. M., Goodarzi, S., & Ghanizadeh, A. R. (2019). Soft computing based formulations for slump, compressive strength, and elastic modulus of bentonite plastic concrete. Journal of Cleaner Production, 230, 1197–1216. https://doi.org/10.1016/j.jclepro.2019.05.168
  • Ashrafian, A., Shokri, F., Amiri, M. J. T., Yaseen, Z. M., & Rezaie-Balf, M. (2020). Compressive strength of Foamed Cellular Lightweight Concrete simulation: New development of hybrid artificial intelligence model. Construction and Building Materials, 230, 117048. https://doi.org/10.1016/j.conbuildmat.2019.117048
  • Asteris, P. G., Nozhati, S., Nikoo, M., Cavaleri, L., & Nikoo, M. (2019). Krill herd algorithm-based neural network in structural seismic reliability evaluation. Mechanics of Advanced Materials and Structures, 26(13), 1146–1153. https://doi.org/10.1080/15376494.2018.1430874
  • Atici, U. (2011). Prediction of the strength of mineral admixture concrete using multivariable regression analysis and an artificial neural network. Expert Systems with Applications, 38(8), 9609–9618. https://doi.org/10.1016/j.eswa.2011.01.156
  • Ayaz, Y., Kocamaz, A. F., & Karakoç, M. B. (2015). Modeling of compressive strength and UPV of high-volume mineral-admixtured concrete using rule-based M5 rule and tree model M5P classifiers. Construction and Building Materials, 94, 235–240. https://doi.org/10.1016/j.conbuildmat.2015.06.029
  • Azunna, S. U. (2019). Compressive strength of concrete with palm kernel shell as a partial replacement for coarse aggregate. SN Applied Sciences, 1(4), 1–10. https://doi.org/10.1007/s42452-019-0334-6
  • Bamigboye, G. O., Okara, O., Bassey, D. E., Jolayemi, K. J., & Ajimalofin, D. (2020). The use of Senilia senilis seashells as a substitute for coarse aggregate in eco-friendly concrete. Journal of Building Engineering, 32, 101811. https://doi.org/10.1016/j.jobe.2020.101811
  • Bandyopadhyay, G., & Chattopadhyay, S. (2007). Single hidden layer artificial neural network models versus multiple linear regression model in forecasting the time series of total ozone. International Journal of Environmental & Technology, 4(1), 141–149.
  • Behnood, A., & Golafshani, E. M. (2020). Machine learning study of the mechanical properties of concretes containing waste foundry sand. Construction and Building Materials, 243, 118152. https://doi.org/10.1016/j.conbuildmat.2020.118152
  • Belhadj, B., Bederina, M., Benguettache, K., & Queneudec, M. (2014). Effect of the type of sand on the fracture and mechanical properties of sand concrete. Advances in Concrete Construction, 2(1), 13–27. https://doi.org/10.12989/acc2014.2.1.013
  • Bilgehan, M. (2011). A comparative study for the concrete compressive strength estimation using neural network and neuro-fuzzy modelling approaches. Nondestructive Testing and Evaluation, 26(1), 35–55. https://doi.org/10.1080/10589751003770100
  • Blaifi, S., Moulahoum, S., Benkercha, R., Taghezouit, B., & Saim, A. (2018). M5P model tree based fast fuzzy maximum power point tracker. Solar Energy, 163, 405–424. https://doi.org/10.1016/j.solener.2018.01.071
  • Boudjellal, K., Bouabaz, M., & Bensebti, S. E. (2020). Formulation of a concrete based on grinded seashells as partial substitution for sand. Civil and Environmental Engineering Reports, 30(4), 56–71. https://doi.org/10.2478/ceer-2020-0050
  • Bu, J., Tian, Z., Zheng, S., & Tang, Z. (2017). Effect of sand content on strength and pore structure of cement mortar. Journal of Wuhan University of Technology-Mater. Sci. Ed, 32(2), 382–390. https://doi.org/10.1007/s11595-017-1607-9
  • Che, Z.-G., Chiang, T.-A., & Che, Z.-H. (2011). Feed-forward neural networks training: A comparison between genetic algorithm and back-propagation learning algorithm. International Journal of Innovative Computing, Information and Control, 7(10), 5839–5850.
  • Cuadrado-Rica, H., Sebaibi, N., Boutouil, M., & Boudart, B. (2016). Properties of ordinary concretes incorporating crushed queen scallop shells. Materials and Structures, 49(5), 1805–1816. https://doi.org/10.1617/s11527-015-0613-7
  • Darwin, D., Browning, J., & Lindquist, W. D. (2004). Control of cracking in bridge decks: Observations from the field. Cement, Concrete, and Aggregates, 26(2), 1–7. https://doi.org/10.1520/CCA12320
  • Debbarma, S., & Ransinchung, G. (2022). Using artificial neural networks to predict the 28-day compressive strength of roller-compacted concrete pavements containing RAP aggregates. Road Materials and Pavement Design, 23(1), 149–167. https://doi.org/10.1080/14680629.2020.1822202
  • Dębska, B., Krasoń, J., & Lichołai, L. (2020). The evaluation of the possible utilization of waste glass in sustainable mortars. Budownictwo o Zoptymalizowanym Potencjale Energetycznym, 10(2/2020), 7–15. https://doi.org/10.17512/bozpe.2020.2.01
  • Duan, Z.-H., Kou, S.-C., & Poon, C.-S. (2013). Prediction of compressive strength of recycled aggregate concrete using artificial neural networks. Construction and Building Materials, 40, 1200–1206. https://doi.org/10.1016/j.conbuildmat.2012.04.063
  • Dutta, S., Murthy, A. R., Kim, D., & Samui, P. (2017). Prediction of compressive strength of self-compacting concrete using intelligent computational modeling. Computers, Materials & Continua, 53(2), 157–174.
  • Edalat-Behbahani, A., Soltanzadeh, F., Emam-Jomeh, M., & Soltan-Zadeh, Z. (2019). Sustainable approaches for developing concrete and mortar using waste seashell. European Journal of Environmental and Civil Engineering, 25(10), 1874–1893.
  • Eo, S.-H., & Yi, S.-T. (2015). Effect of oyster shell as an aggregate replacement on the characteristics of concrete. Magazine of Concrete Research, 67(15), 833–842. https://doi.org/10.1680/macr.14.00383
  • Eziefula, U. G., Ezeh, J. C., & Eziefula, B. I. (2018). Properties of seashell aggregate concrete: A review. Construction and Building Materials, 192, 287–300. https://doi.org/10.1016/j.conbuildmat.2018.10.096
  • Eziefula, U. G., Obiechefu, G. C., & Charles, M. E. (2020). Use of periwinkle shell by-products in Portland cement-based materials: An overview. International Journal of Environment and Waste Management, 26(3), 362–388. https://doi.org/10.1504/IJEWM.2020.109165
  • Figueroa, J., Fuentealba, M., Ponce, R., & Zúñiga, M. (2020). Effects on the compressive strength and thermal conductivity of mass concrete by the replacement of fine aggregate by mussel shell particulate. IOP Conference Series: Earth and Environmental Science, 503(1), 012070. https://doi.org/10.1088/1755-1315/503/1/012070
  • Friedman, J. H. (1991). Multivariate adaptive regression splines. The Annals of Statistics, 19(1), 1–67. https://doi.org/10.1214/aos/1176347963
  • Gholampour, A., Mansouri, I., Kisi, O., & Ozbakkaloglu, T. (2018). Evaluation of mechanical properties of concretes containing coarse recycled concrete aggregates using multivariate adaptive regression splines (MARS), M5 model tree (M5Tree), and least squares support vector regression (LSSVR) models. Neural Computing and Applications, 32(1), 295–308
  • Goushik, M., & Ramasamy, V. (2020). Experimental investigation of properties of natural fiber reinforced concrete with partial replacement of seashell as fine aggregate. EPRA International Journal of Research and Development, 5(8), 658–663. https://doi.org/10.36713/epra2016
  • Gracia, J., Mazon, A. J., & Zamora, I. (2005). Best ANN structures for fault location in single-and double-circuit transmission lines. IEEE Transactions on Power Delivery, 20(4), 2389–2395. https://doi.org/10.1109/TPWRD.2005.855482
  • Haykin, S. (1994). Neural networks: A comprehensive foundation. MacMillan College Publishing Co.
  • Chakravarthy H.G, N., & Mutusva, T. (2015). Investigation of properties of concrete with seashells as a coarse aggregate replacement in concrete. MATTER: International Journal of Science and Technology, 1(1), 285–295. https://doi.org/10.20319/mijst.2016.s11.285295
  • James, G., Witten, D., Hastie, T., & Tibshirani, R. (2013). An introduction to statistical learning (Vol. 112). Springer.
  • Khademi, F., Jamal, S. M., Deshpande, N., & Londhe, S. (2016). Predicting strength of recycled aggregate concrete using artificial neural network, adaptive neuro-fuzzy inference system and multiple linear regression. International Journal of Sustainable Built Environment, 5(2), 355–369. https://doi.org/10.1016/j.ijsbe.2016.09.003
  • Kuo, W.-T., Wang, H.-Y., Shu, C.-Y., & Su, D.-S. (2013). Engineering properties of controlled low-strength materials containing waste oyster shells. Construction and Building Materials, 46, 128–133. https://doi.org/10.1016/j.conbuildmat.2013.04.020
  • Martínez-García, C., González-Fonteboa, B., Martínez-Abella, F., & Carro-López, D. (2017). Performance of mussel shell as aggregate in plain concrete. Construction and Building Materials, 139, 570–583. https://doi.org/10.1016/j.conbuildmat.2016.09.091
  • Mata, J. (2011). Interpretation of concrete dam behaviour with artificial neural network and multiple linear regression models. Engineering Structures, 33(3), 903–910. https://doi.org/10.1016/j.engstruct.2010.12.011
  • Milne, L. (1995). Feature selection using neural networks with contribution measures. AI-Conference, 571.
  • Mohanalakshmi, M. V., Indhu, M. S., Hema, M. P., & Prabha, M. V. C. (2017). Developing concrete using sea shell as a fine aggregate. International Journal for Innovative Research in Science & Technology, 3(10), 282–286.
  • Muthusamy, K., Tukimat, N., Sarbini, N. N., & Zamri, N. A. (2016). Exploratory study on the use of crushed cockle shell as partial sand replacement in concrete. International Journal of Research in Engineering and Science, 4(2), 67–71.
  • Naderpour, H., Kheyroddin, A., & Amiri, G. G. (2010). Prediction of FRP-confined compressive strength of concrete using artificial neural networks. Composite Structures, 92(12), 2817–2829. https://doi.org/10.1016/j.compstruct.2010.04.008
  • Nguyen, D. H., Boutouil, M., Sebaibi, N., Baraud, F., & Leleyter, L. (2017). Durability of pervious concrete using crushed seashells. Construction and Building Materials, 135, 137–150. https://doi.org/10.1016/j.conbuildmat.2016.12.219
  • Nguyen, D. H., Boutouil, M., Sebaibi, N., Leleyter, L., & Baraud, F. (2013). Valorization of seashell by-products in pervious concrete pavers. Construction and Building Materials, 49, 151–160. https://doi.org/10.1016/j.conbuildmat.2013.08.017
  • Nguyen, D., Sebaibi, N., & Boutouil, M. (2013). The use of seashell by-products in pervious concrete pavers. International Journal of Civil Science and Engineering, 7, 385–392.
  • Panda, K. C., Behera, S., & Jena, S. (2020). Effect of rice husk ash on mechanical properties of concrete containing crushed seashell as fine aggregate. Materials Today: Proceedings, 32, 838–843.
  • Quinlan, J. R. (1992). Learning with continuous classes. 5th Australian Joint Conference on Artificial Intelligence, 92, 343–348.
  • Ramakrishna, B., & Sateesh, A. (2016). Exploratory study on the use of cockle shell as partial Coarse & Fine aggregate replacement in concrete. International Research Journal of Engineering and Technology (IRJET), 3(6), 2347–2349
  • Raseela, M. K. P., & George, B. M. S. (2019). Experimental investigation on use of cockle shell as partial coarse aggregate replacement in concrete. International Research Journal of Advanced Engineering and Science, 4(2), 504–510.
  • Richardson, A. E., & Fuller, T. (2013). Sea shells used as partial aggregate replacement in concrete. Structural Survey, 31(5), 347–354. https://doi.org/10.1108/SS-12-2012-0041
  • Safi, B., Saidi, M., Daoui, A., Bellal, A., Mechekak, A., & Toumi, K. (2015). The use of seashells as a fine aggregate (by sand substitution) in self-compacting mortar (SCM). Construction and Building Materials, 78, 430–438. https://doi.org/10.1016/j.conbuildmat.2015.01.009
  • Sainudin, M., & Othman, N. (2019). Performance of concrete containing mussel shell (Perna viridis) ash under effect of sodium chloride curing. IOP Conference Series: Materials Science and Engineering, 601(1), 012033. https://doi.org/10.1088/1757-899X/601/1/012033
  • Salimbahrami, S., & Shakeri, R. (2021). Experimental investigation and comparative machine-learning prediction of compressive strength of recycled aggregate concrete. Soft Computing, 25(2), 919–932. https://doi.org/10.1007/s00500-021-05571-1
  • Samui, P. (2013). Multivariate adaptive regression spline (Mars) for prediction of elastic modulus of jointed rock mass. Geotechnical and Geological Engineering, 31(1), 249–253. https://doi.org/10.1007/s10706-012-9584-4
  • Sangeetha, P., Shanmugapriya, M., Saravanan, K. S., Prabhakaran, P., & Shashankar, V. (2022). Mechanical properties of concrete with seashell waste as partial replacement of cement and aggregate. Materials Today: Proceedings, 61, 320–326. https://doi.org/10.1016/j.matpr.2021.09.501
  • Sarıdemir, M., Topçu, İ. B., Özcan, F., & Severcan, M. H. (2009). Prediction of long-term effects of GGBFS on compressive strength of concrete by artificial neural networks and fuzzy logic. Construction and Building Materials, 23(3), 1279–1286. https://doi.org/10.1016/j.conbuildmat.2008.07.021
  • Schalkoff, R. J. (1997). Artificial neural networks. McGraw-Hill Higher Education.
  • Schmidhuber, J. (2015). Deep learning in neural networks: An overview. Neural Networks, 61, 85–117. https://doi.org/10.1016/j.neunet.2014.09.003
  • Sharda, V. N., Patel, R. M., Prasher, S. O., Ojasvi, P. R., & Prakash, C. (2006). Modeling runoff from middle Himalayan watersheds employing artificial intelligence techniques. Agricultural Water Management, 83(3), 233–242. https://doi.org/10.1016/j.agwat.2006.01.003
  • Soneye, T., Nkem Ede, A., Bamigboye, G. O., & Olukanni, D. O. (2016). The study of periwinkle shells as fine and coarse aggregate in concrete works. 3rd International Conference on African Development Issues.
  • Steinberg, D., Bernstein, B., Colla, P., & Martin, K. (2001). MARS user guide. Salford Systems.
  • Svozil, D., Kvasnicka, V., & Pospichal, J. (1997). Introduction to multi-layer feed-forward neural networks. Chemometrics and Intelligent Laboratory Systems, 39(1), 43–62. https://doi.org/10.1016/S0169-7439(97)00061-0
  • Tavana Amlashi, A., Alidoust, P., Pazhouhi, M., Pourrostami, K., Pourrostami Niavol, K., Khabiri, S., & Reza Ghanizadeh, A. (2021). AI-based formulation for mechanical and workability properties of eco-friendly concrete made by waste foundry sand. Journal of Materials in Civil Engineering, 33(4), 04021038. https://doi.org/10.1061/(ASCE)MT.1943-5533.0003645
  • Topcu, I. B., & Sarıdemir, M. (2008). Prediction of compressive strength of concrete containing fly ash using artificial neural networks and fuzzy logic. Computational Materials Science, 41(3), 305–311. https://doi.org/10.1016/j.commatsci.2007.04.009
  • UNEP Global Environmental Alert Service. (2014). Sand, rarer than one thinks.
  • Varhen, C., Carrillo, S., & Ruiz, G. (2017). Experimental investigation of Peruvian scallop used as fine aggregate in concrete. Construction and Building Materials, 136, 533–540. https://doi.org/10.1016/j.conbuildmat.2017.01.067
  • Vilane, B. R. T., & Sabelo, N. (2016). The effect of aggregate size on the compressive strength of concrete. Journal of Agricultural Science and Engineering, 2(6), 66–69.
  • Vu, X. H., Daudeville, L., & Malecot, Y. (2011). Effect of coarse aggregate size and cement paste volume on concrete behavior under high triaxial compression loading. Construction and Building Materials, 25(10), 3941–3949. https://doi.org/10.1016/j.conbuildmat.2011.04.026
  • Wang, Y., & Witten, I. H. (1997). Induction of model trees for predicting continuous classes. Proceedings of the poster papers of the European conference on machine learning. University of Economics, Faculty of Informatics and Statistics.
  • Werbos, P. J. (1994). The roots of backpropagation: From ordered derivatives to neural networks and political forecasting (Vol. 1). John Wiley & Sons.
  • Yang, C.-C., Prasher, S. O., Lacroix, R., & Kim, S. H. (2004). Application of multivariate adaptive regression splines (MARS) to simulate soil temperature. Transactions of the ASAE, 47(3), 881.
  • Yang, E.-I., Kim, M.-Y., Park, H.-G., & Yi, S.-T. (2010). Effect of partial replacement of sand with dry oyster shell on the long-term performance of concrete. Construction and Building Materials, 24(5), 758–765. https://doi.org/10.1016/j.conbuildmat.2009.10.032
  • Yang, E.-I., Yi, S.-T., & Leem, Y.-M. (2005). Effect of oyster shell substituted for fine aggregate on concrete characteristics: Part I. Fundamental properties. Cement and Concrete Research, 35(11), 2175–2182. https://doi.org/10.1016/j.cemconres.2005.03.016
  • Yang, Y., & Zhang, Q. (1997). A hierarchical analysis for rock engineering using artificial neural networks. Rock Mechanics and Rock Engineering, 30(4), 207–222. https://doi.org/10.1007/BF01045717
  • Yaseen, Z. M., Deo, R. C., Hilal, A., Abd, A. M., Bueno, L. C., Salcedo-Sanz, S., & Nehdi, M. L. (2018). Predicting compressive strength of lightweight foamed concrete using extreme learning machine model. Advances in Engineering Software, 115, 112–125. https://doi.org/10.1016/j.advengsoft.2017.09.004
  • Yoon, G. L., Kim, B. T., Kim, B. O., & Han, S. H. (2003). Chemical-mechanical characteristics of crushed oyster-shell. Waste Management (New York, NY), 23(9), 825–834. https://doi.org/10.1016/S0956-053X(02)00159-9
  • Zini, G., & d’Onofrio, G. (2003). Neural network in hematopoietic malignancies. Clinica Chimica Acta, 333(2), 195–201. https://doi.org/10.1016/S0009-8981(03)00186-4

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.