208
Views
1
CrossRef citations to date
0
Altmetric
Original Articles

Fragility of single-span masonry arch bridges accounting for deterioration and damage effects

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 2048-2069 | Received 17 Mar 2022, Accepted 27 Jul 2022, Published online: 09 Aug 2022

References

  • Andreini, M., Gardoni, P., Pagliara, S., & Sassu, M. (2016). Probabilistic models for erosion parameters and reliability analysis of earth dams and levels. ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part A: Civil Engineering, 2(4), 04016006, 1-13. https://doi.org/10.1061/AJRUA6.0000878
  • Avşar, Ö., Yakut, A., & Caner, A. (2011). Analytical fragility curves for ordinary highway bridges in Turkey. Earthquake Spectra, 27(4), 971–996. https://doi.org/10.1193/1.3651349
  • Barbieri, D. M. (2019). Two methodological approaches to assess the seismic vulnerability of masonry bridges. Journal of Traffic and Transportation Engineering (English Edition), 6(1), 49–64. https://doi.org/10.1016/j.jtte.2018.09.003
  • Basoz, N., & Kiremidjian, A. S. (1999). Development of empirical fragility curves for bridges (ASCE Ed.). ASCE Technical Council on Lifeline Earthquake Engineering Monograph.
  • Benedetti, A., Nichols, J., & Tomor, A. (2016). Influence of environmental degradation on dynamic properties of masonry bridges [Paper presentation]. Brick and Block Masonry: Trends, Innovations and Challenges - Proceedings of the 16th International Brick and Block Masonry Conference, IBMAC, 2016, September, 1029–1036. https://doi.org/10.1201/b21889-129
  • Brencich, A., & De Francesco, U. (2004). Assessment of multispan masonry arch bridges. II: Examples and applications. Journal of Bridge Engineering, 9(6), 591–598. https://doi.org/10.1061/(ASCE)1084-0702(2004)9:6(591)
  • CEN. (2004). (European Committee for Standardization) EN1998 Eurocode 8-1: Design of structures for earthquake resistance. Part 1: General rules, seismic actions and rules for buildings, 144(6), 55–60. https://doi.org/10.1680/cien.144.6.55.40618
  • Choe, D. E., Gardoni, P., Rosowsky, D., & Haukaas, T. (2009). Seismic fragility estimates for reinforced concrete bridges subject to corrosion. Structural Safety, 31(4), 275–283. https://doi.org/10.1016/j.strusafe.2008.10.001
  • Choi, E., DesRoches, R., & Nielson, B. (2004). Seismic fragility of typical bridges in moderate seismic zones. Engineering Structures, 26(2), 187–199. https://doi.org/10.1016/j.engstruct.2003.09.006
  • Clemente, P., & Raithel, A. (1998). The mechanism model in the seismic check of stone arches. In A. Sinopoli (Ed.), Arch bridges: History, analysis, assessment, maintenance and repair (1st Ed., pp. 123–129). CRC Press.
  • Cocciaglia, D., & Mosca, L. (1998). Capacità portante dei ponti ad arco ferroviari. La Tecnica Professionale.
  • Cui, F., Li, H., Dong, X., Wang, B., Li, J., Xue, H., & Qi, M. (2021). Improved time-dependent seismic fragility estimates for deteriorating RC bridge substructures exposed to chloride attack. Advances in Structural Engineering, 24(3), 437–452. https://doi.org/10.1177/1369433220956812
  • da Porto, F., Tecchio, G., Zampieri, P., Modena, C., & Prota, A. (2016). Simplified seismic assessment of railway masonry arch bridges by limit analysis. Structure and Infrastructure Engineering, 12(5), 567–591. https://doi.org/10.1080/15732479.2015.1031141
  • De Lorenzis, L., DeJong, M., & Ochsendorf, J. (2007). Failure of masonry arches under impulse base motion. Earthquake Engineering & Structural Dynamics, 36(14), 2119–2136. https://doi.org/10.1002/eqe.719
  • Di Sarno, L., da Porto, F., Guerrini, G., Calvi, P. M., Camata, G., & Prota, A. (2019). Seismic performance of bridges during the 2016 Central Italy earthquakes. Bulletin of Earthquake Engineering, 17(10), 5729–5761. https://doi.org/10.1007/s10518-018-0419-4
  • EN 1996-1-1. (2022). Eurocode 6: Design of masonry structures - Part 1-1: General rules for reinforced and unreinforced masonry structures. In European Committee for Standardization (CEN). Belgium.
  • Fabbrocino, F., Ramaglia, G., Lignola, G. P., & Prota, A. (2019). Ductility-based incremental analysis of curved masonry structures. Engineering Failure Analysis, 97, 653–675. https://doi.org/10.1016/j.engfailanal.2019.01.027
  • FEMA - Federal Emergency Management Agency. (2003). HAZUS-MH technical manual (pp. 712).
  • Gardoni, P., & Rosowsky, D. (2011). Seismic fragility increment functions for deteriorating reinforced concrete bridges. Structure and Infrastructure Engineering, 7(11), 869–879. https://doi.org/10.1080/15732470903071338
  • Gasparini, D. A., & Vanmarcke, E. H. (1976). Simulated earthquake motions compatible with prescribed response spectra. MIT Department of Civil Engineering Research Report.
  • Ghosh, J., & Padgett, J. E. (2010). Aging considerations in the development of time-dependent seismic fragility curves. Journal of Structural Engineering, 136(12), 1497–1511. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000260
  • Italian State Railways. (1907). Modalità da adottarsi per la compilazione dei progetti dei manufatti (in Italian).
  • Kamiński, T., & Bień, J. (2013). Application of kinematic method and FEM in analysis of ultimate load bearing capacity of damaged masonry arch bridges. Procedia Engineering, 57, 524–532. https://doi.org/10.1016/j.proeng.2013.04.067
  • Kappos, A. J., Panagopoulos, G., Panagiotopoulos, C., & Penelis, G. (2006). A hybrid method for the vulnerability assessment of R/C and URM buildings. Bulletin of Earthquake Engineering, 4(4), 391–413. https://doi.org/10.1007/s10518-006-9023-0
  • Kliukas, R., Lukoševičienė, O., & Juozapaitis, A. (2015). A time-dependent reliability prediction of deteriorating spun concrete bridge piers. European Journal of Environmental and Civil Engineering, 19(10), 1202–1215. https://doi.org/10.1080/19648189.2015.1008650
  • Lourenço, P. B. (2009). Recent advances in masonry modelling: Micromodelling and homogenisation. Chapter in Multiscale Modeling in Solid Mechanics - Computational Approaches, Computational and Experimental Methods in Structures: Volume 3, edited by U. Galvanetto, M.H.F. Aliabadi (Imperial College London, UK), 251–294. https://doi.org/10.1142/9781848163089_0006
  • Marefat, M. S., Yazdani, M., & Jafari, M. (2019). Seismic assessment of small to medium spans plain concrete arch bridges. European Journal of Environmental and Civil Engineering, 23(7), 894–915. https://doi.org/10.1080/19648189.2017.1320589
  • Melbourne, C., Wang, J., & Tomor, A. K. (2007). A new masonry arch bridge assessment strategy (SMART). Proceedings of the Institution of Civil Engineers - Bridge Engineering, 160(2), 81–87. https://doi.org/10.1680/bren.2007.160.2.81
  • Modena, C., Tecchio, G., Pellegrino, C., da Porto, F., Donà, M., Zampieri, P., & Zanini, M. A. (2015). Reinforced concrete and masonry arch bridges in seismic areas: Typical deficiencies and retrofitting strategies. Structure and Infrastructure Engineering, 11(4), 415–442. https://doi.org/10.1080/15732479.2014.951859
  • Mosleh, A., Razzaghi, M. S., Jara, J., & Varum, H. (2016). Seismic fragility analysis of typical pre-1990 bridges due to near- and far-field ground motions. International Journal of Advanced Structural Engineering, 8(1), 1–9. https://doi.org/10.1007/s40091-016-0108-y
  • Mouroux, P., & Le Brun, B. (2006). Presentation of RISK-UE project. Bulletin of Earthquake Engineering, 4(4), 323–339. https://doi.org/10.1007/s10518-006-9020-3
  • Muntasir Billah, A. H. M., & Shahria Alam, M. (2015). Seismic fragility assessment of highway bridges: a state-of-the-art review. Structure and Infrastructure Engineering, 11(6), 804–832. https://doi.org/10.1080/15732479.2014.912243
  • Nielson, B. (2003). Bridge seismic fragility - Functionality relationships: Arequirement for loss estimation in Mid-America. Georgia Institute of Technology.
  • Nielson, B. G., & DesRoches, R. (2007). Analytical seismic fragility curves for typical bridges in the central and southeastern United States. Earthquake Spectra, 23(3), 615–633. https://doi.org/10.1193/1.2756815
  • NTC. (2018). D.M. 17/01/2018. Aggiornamento delle ‘Norme tecniche per le costruzioni’ (in Italian). In Official Gazette of Italian Republic n°42 of 20h February 2018, Italian Ministry of Infrastructure and Transport, Rome, Italy.
  • Oliveira, D. V., Lourenço, P. B., & Lemos, C. (2010). Geometric issues and ultimate load capacity of masonry arch bridges from the northwest Iberian Peninsula. Engineering Structures, 32(12), 3955–3965. https://doi.org/10.1016/j.engstruct.2010.09.006
  • Ozaeta García-Catalán, R., & Martín-Caro, J. A. (2020). Catalogue of damages in masonry arch bridges (H. Sattler & K. Ross (Eds.)). International Union of Railways (UIC). https://www.shop-etf.com/en/catalogue-of-damages-in-masonry-arch-bridges.html?mc_cid=85ec56f8ba&mc_eid=2b4aa962aa
  • Pelà, L., Aprile, A., & Benedetti, A. (2009). Seismic assessment of masonry arch bridges. Engineering Structures, 31(8), 1777–1788. https://doi.org/10.1016/j.engstruct.2009.02.012
  • Rots, J. G. (1991). Smeared and discrete representations of localized fracture. International Journal of Fracture, 51(1), 45–59. https://doi.org/10.1007/BF00020852
  • Rots, J. G. (1997). Structural masonry. An experimental/numerical basis for practical design rules. (CUR Report 171). A A Balkema Publishers, ISBN: 9054106808
  • Saler, E., Pernechele, V., Anastasio, M., Minotto, M., & Tecchio, G. (2019). Macroscale vulnerability assessment of bridges at municipality level (pp. 15–19). Atti Del XVIII Convegno ANIDIS L’ingegneria Sismica in Italia.
  • Sassu, M., Giresini, L., & Puppio, M. L. (2017). Failure scenarios of small bridges in case of extreme rainstorms. Sustainable and Resilient Infrastructure, 2(3), 108–110. https://doi.org/10.1080/23789689.2017.1301696
  • Scozzese, F., Ragni, L., Tubaldi, E., & Gara, F. (2019). Modal properties variation and collapse assessment of masonry arch bridges under scour action. Engineering Structures, 199, 109665. https://doi.org/10.1016/j.engstruct.2019.109665
  • SB-ICA. (2007). Guideline for inspection and condition assessment of existing European railway bridges - Including advices on the use of non-destructive testing. Deliverable D4.2 of the European Project Sustainable Bridges (contract no. TIP3-CT-2003-001653), 1–259. http://ltu.diva-portal.org/smash/record.jsf?pid=diva2%3A1325338&dswid=-6430
  • Shinozuka, M., Feng, M. Q., Kim, H.-K., & Kim, S. (2000). Nonlinear static procedure for fragility curve development. Journal of Engineering Mechanics, 126(12), 1287–1295. https://doi.org/10.1061/(ASCE)0733-9399(2000)126:12(1287)
  • Tecchio, G., Donà, M., & da Porto, F. (2016). Seismic fragility curves of as-built single-span masonry arch bridges. Bulletin of Earthquake Engineering, 14(11), 3099–3124. https://doi.org/10.1007/s10518-016-9931-6
  • TNO Diana v.9.6 User’s Manual. (2014). https://dianafea.com/manuals/d96/Diana.html
  • Vamvatsikos, D., & Allin Cornell, C. (2002). Incremental dynamic analysis. Earthquake Engineering & Structural Dynamics, 31(3), 491–514. https://doi.org/10.1002/eqe.141
  • Yamazaki, F., Hamada, T., Motoyama, H., & Yamauchi, H. (1999). Earthquake damage assessment of expressway bridges in Japan. Technical Council on Lifeline Earthquake Engineering Monograph, 16, 361–370.
  • Zampieri, P., Zanini, M. A., & Faleschini, F. (2016). Influence of damage on the seismic failure analysis of masonry arches. Construction and Building Materials, 119, 343–355. https://doi.org/10.1016/j.conbuildmat.2016.05.024
  • Zhong, J., Gardoni, P., & Rosowsky, D. (2012). Seismic fragility estimates for corroding reinforced concrete bridges. Structure and Infrastructure Engineering, 8(1), 55–69. https://doi.org/10.1080/15732470903241881

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.