148
Views
0
CrossRef citations to date
0
Altmetric
Original Articles

Physical modelling of EPB TBM in dry sand and greenfield conditions

ORCID Icon, &
Pages 3236-3259 | Received 21 Apr 2022, Accepted 29 Sep 2022, Published online: 18 Oct 2022

References

  • Atkinson, J. H., & Potts, D. M. (1977). Subsidence above shallow tunnel in soft ground. Journal of the Geotechnical Engineering Division, 103(4), 307–325. https://doi.org/10.1061/AJGEB6.0000402
  • Attewell, P. B., & Woodman, J. P. (1982). Predicting the dynamics of ground settlement ant its derivatives caused by tunneling in soil. Ground Engineering, 15(8), 13–22.
  • Bel, J. (2018). Modélisation physique de l’impact du creusement d’un tunnel par tunnelier à front pressurisé sur des fondations profondes [PhD thesis]. Ecole Nationale des Travaux Publics de l’Etat.
  • Berthoz, N. (2012). Modélisation physique et théorique du creusement pressurisé des tunnels en terrains meubles homogènes et stratifiés [PhD thesis]. Ecole Nationale des Travaux Publics de l’Etat.
  • Berthoz, N., Branque, D., Subrin, D., & Wong, H. (2013). Stress measurement in partially saturated soils and its application to physical modeling of tunnel excavation. Canadian Geotechnical Journal, 50(10), 1077–1087. https://doi.org/10.1139/cgj-2013-0154
  • Berthoz, N., Branque, D., Subrin, D., & Wong, H. (2018). TBM soft ground interaction: Experimental study on a 1 g reduced-scale EPBS model. Tunnelling and Underground Space Technology, 72, 189–209. https://doi.org/10.1016/j.tust.2017.11.022
  • Berthoz, N., Branque, D., Subrin, D., Wong, H., & Humbert, E. (2012). Face failure in homogeneous and stratified soft ground: Theoretical and experimental approaches on 1gEPBS reduced-scale model. Tunnelling and Underground Space Technology, 30, 25–37. https://doi.org/10.1016/j.tust.2012.01.005
  • Bezuijen, A., & Van Der Schrier, J. (1994). The influence of a bored tunnel on pile foundations. Centrifuge, 94, 681–686.
  • Branque, D., & Boutin, C. (2002). Rapport de synthèse des essais sur modèle réduit de tunnelier à pression de terre. Projet National Eupalinos 2000. Association Française des Tunnels et Espaces Souterrains.
  • Branque, D., Doan, V. H., & Boutin, C., (2006). Earth pressure balanced shield method: experimental study on a large reduced scale model, Proceedings of the 6th International Conference on Physical Modeling in Geotechnics, Hong Kong, pp. 1145–1150.
  • Broere, W., & Brinkgreve, R. (2002). Phased simulation of a tunnel boring process in soft soil. In Numerical methods in geotechnical engineering (pp. 529–536). Presse de l’ENPC.
  • Chambon, P., & Corté, J. F. (1991). Etude sur modèles réduits centrifugés: application aux tunnels à faible profondeur en terrain meuble pulvérulent. Collection études et recherches des Laboratoires des Ponts et Chaussées, série Géotechnique, GT 48.
  • Clough, G. W., & Schmidt, B. (1981). Design and performance of excavations and tunnels in soft clay. In Soft clay engineering (pp. 569–634). Elsevier.
  • Dias, D., & Kastner, R. (2013). Movements caused by the excavation of tunnels using face pressurized shields—Analysis of monitoring and numerical modeling results. Engineering Geology, 152(1), 17–25. https://doi.org/10.1016/j.enggeo.2012.10.002
  • Dias, T. G. S., & Bezuijen, A. (2015). Data Analysis of Pile Tunnel Interaction. Journal of Geotechnical and Geoenvironmental Engineering, 141(12), https://doi.org/10.1061/(ASCE)GT.1943-5606.0001350
  • Doan, H. V. (2007). Creusement des tunnels en terrain meuble: étude expérimentale sur modèle réduit de tunnelier à pression de terre en sol cohérent frottant [PhD thesis]. Institut National des Sciences Appliquées de Lyon, France.
  • Doanh, T., Ibraim, E., & Matiotti, R. (1997). Undrained instability of very loose Hostun sand in triaxial compression and extension. part 1: Experimental observations. Mechanics of Cohesive-Frictional Materials, 2(1), 47–70. https://doi.org/10.1002/(SICI)1099-1484(199701)2:1<47::AID-CFM26>3.0.CO;2-9
  • Franza, A., Marshall, A. M., & Zhou, B. (2019). Greenfield tunnelling in sands: The effects of soil density and relative depth. Geotechnique, 69(4), 297–307. https://doi.org/10.1680/jgeot.17.P.091
  • Gay, O., Boutonnier, L., Foray, P., & Flavigny, E. (2003). Laboratory characterization of Hostun RF sand at very low confining stresses. In Deformation characteristics of geomaterials, H. Di Benedetto, T. Doanh, H. Geoffroy, C. Sauzeat (eds.), (pp. 423–430).
  • Hu, X., He, C., Walton, G., Fang, Y., & Dai, G. (2020). Laboratory model test of EPB shield tunneling in a cobble-rich soil. Journal of Geotechnical and Geoenvironmental Engineering, 146(10). https://doi.org/10.1061/(ASCE)GT.1943-5606.0002355
  • Jacobsz, S., Standing, J., Mair, R., Hagiwara, T., & Sugiyama, T. (2004). Centrifuge modelling of tunnelling near driven piles. Soils and Foundations, 44(1), 49–56. https://doi.org/10.3208/sandf.44.49
  • Kaalberg, F., Teunissen, E., Van Tol, A., & Bosch, J., (2005). Dutch research on the impact of shield tunnelling on pile foundations, Geotechnical Aspects of underground Construction in Soft Ground The proceedings of the 5th International Conference of T C28 of the ISSMGE, Netherlands, 5, pp. 123–131.
  • Kamata, H., & Mashimo, H. (2003). Centrifuge model test of tunnel face reinforcement by bolting. Tunnelling and Underground Space Technology, 18(2-3), 205–212. https://doi.org/10.1016/S0886-7798(03)00029-4
  • Kasper, T., & Meschke, G. (2004). A 3D finite element simulation model for TBM tunnelling in soft ground. International Journal for Numerical and Analytical Methods in Geomechanics, 28(14), 1441–1460. https://doi.org/10.1002/nag.395
  • Kasper, T., & Meschke, G. (2006). On the influence of face pressure, grouting pressure and TBM design in soft ground tunnelling. Tunnelling and Underground Space Technology, 21(2), 160–171. https://doi.org/10.1016/j.tust.2005.06.006
  • Kavvadas, M., Litsas, D., Vazaios, I., & Fortsakis, P. (2017). Development of a 3D finite element model for shield EPB tunneling. Tunnelling and Underground Space Technology, 65, 22–34. https://doi.org/10.1016/j.tust.2017.02.001
  • Komiya, K., Soga, K., Akagi, H., Hagiwara, T., & Bolton, M. D. (1999). Finite element modelling of excavation and advancement processes of a shield tunnelling machine. Soils and Foundations, 39(3), 37–52. https://doi.org/10.3208/sandf.39.3_37
  • Lee, C., & Chiang, K. (2007). Responses of single piles to tunnelling-induced soil movements in sandy ground. Canadian Geotechnical Journal, 44(10), 1224–1241. https://doi.org/10.1139/T07-050
  • Lee, C. J., Wu, B. R., Chen, H. T., & Chiang, K. H. (2006). Tunnel stability and arching effects during tunnelling in soft clayey soil. Tunnelling and Underground Space Technology, 21(2), 119–132. https://doi.org/10.1016/j.tust.2005.06.003
  • Lee, Y., & Bassett, R. (2007). Influence zones for 2D pile-soil-tunnelling interaction based on model test and numerical analysis. Tunnelling and Underground Space Technology, 22(3), 325–342. https://doi.org/10.1016/j.tust.2006.07.001
  • Lee, Y., & Yoo, C. (2006). Behaviour of a bored tunnel adjacent to a line of loaded piles. Tunnelling and Underground Space Technology, 21(3-4), 370. https://doi.org/10.1016/j.tust.2005.12.185
  • Loganathan, N., & Poulos, H. G. (1998). Analytical prediction of tunnelling-induced ground movements in clay. Journal of Geotechnical and Geoenvironmental Engineering, 124(9), 846–856. https://doi.org/10.1061/(ASCE)1090-0241(1998)124:9(846)
  • Loganathan, N., Poulos, H., & Stewart, D. (2000). Centrifuge model testing of tunnelling-induced ground and pile deformations. Géotechnique, 50(3), 283–294. https://doi.org/10.1680/geot.2000.50.3.283
  • Losacco, N., & Viggiani, M. B. G. (2019). Class A prediction of mechanised tunnelling in Rome. Tunnelling and Underground Space Technology, 87, 160–173. https://doi.org/10.1016/j.tust.2019.02.020
  • Mair, R. J. (1979). Centrifugal modelling of tunnel construction in soft clay [PhD thesis]. Cambridge University.
  • Mair, R. J., & Taylor, R. N. (1997). Bored tunnelling in the urban environment. Proceedings of the 14th International Conference on Soil Mechanics and Foundation Engineering, pp. 2353–2385.
  • Mair, R. J., Taylor, R. N., & Bracegirdle, A. (1993). Subsurface settlement profiles above tunnels in clay. Géotechnique, 43(2), 315–320. https://doi.org/10.1680/geot.1993.43.2.315
  • Marshall, A. M. (2009). Tunnelling in sand and its effects on pipelines and piles [PhD thesis]. University of Cambridge.
  • Marshall, A. M., Farrell, R. P., Klar, A., & Mair, R. J. (2012). Tunnels in sands: The effect of size, depth, and volume loss on greenfield displacements. Geotechnique, 62(5), 385–399. https://doi.org/10.1680/geot.10.P.047
  • Marshall, A. M., & Mair, R. (2011). Tunnelling beneath driven or jacked end-bearing piles in sand. Canadian Geotechnical Journal, 48(12), 1757–1771. https://doi.org/10.1139/t11-067
  • Meguid, M., & Mattar, J. (2009). Investigation of tunnel-soil-pile interaction in cohesive soils. Journal of Geotechnical and Geoenvironmental Engineering, 135(7), 973–979. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000004
  • Melis, M., & Medina, L. (2005). Predicted versus measured soil movements induced by shield tunnelling in the Madrid Metro extension. Canadian Geotechnical Journal, 42, 1160–1172.
  • Melis, M., Medina, L., & Rodriguez, J. M. (2002). Prediction and analysis of subsidence induced by shield tunnelling in the Madrid Metro extension. Canadian Geotechnical Journal, 39(6), 1273–1287. https://doi.org/10.1139/t02-073
  • Messerli, J., Pimentel, E., & Anagnostou, G. (2010). Experimental study into tunnel face collapse in sand. Proceedings of the 7th International Conference in Physical Modelling in Geotechnics, Zurich, Switzerland.
  • Morton, J. D., & King, K. H. (1979). Effect of tunnelling on the bearing capacity and settlement of piled foundations. In M. J. Jones (Ed.), Proceedings Tunnelling’79, edition (pp. 57–58).
  • Mroueh, H., & Shahrour, I. (2008). A simplified 3D model for tunnel construction using tunnel boring machines. Tunnelling and Underground Space Technology, 23(1), 38–45. https://doi.org/10.1016/j.tust.2006.11.008
  • Ng, C., Lu, H., & Peng, S. (2013). Three-dimensional centrifuge modelling of the effects of twin tunnelling on an existing pile. Tunnelling and Underground Space Technology, 35, 189–199. https://doi.org/10.1016/j.tust.2012.07.008
  • Nomoto, T., Imamura, S., Hagiwara, T., Kusakabe, O., & Fujii, N. (1999). Shield tunnel construction in centrifuge. Journal of Geotechnical and Geoenvironmental Engineering, 125(4), 289–300. https://doi.org/10.1061/(ASCE)1090-0241(1999)125:4(289)
  • Pang C. H., Yong K. Y., Chow Y. K., & Wang J., (2005). The response of pile foundations subjected to shield tunnelling. Proc., 5th Int. Symp. on Geotechnical Aspects of Underground Construction in Soft Ground, Balkema, Leiden, Netherlands, pp. 737–743.
  • Peck, R. B. (1969). Deep excavations and tunneling in soft ground [Paper presentation]. Proceedings of the 7th International Conference on Soil Mechanics and Foundation Engineering, Mexico City. State of the Art Volume, pp. 225–290.
  • Sagaseta, C. (1987). Analysis of undrained soil deformation due to ground loss. Géotechnique, 37(3), 301–320. https://doi.org/10.1680/geot.1987.37.3.301
  • Scott, R. F. (1989). Essais en centrifugeuse et technique de la modélisation. Revue Française de Géotechnique, 48(48), 15–34. https://doi.org/10.1051/geotech/1989048015
  • Selemetas, D., & Standing, J. R., (2017). Response of full-scale piles to EP BM tunnelling in London Clay. Géotechnique, 67(9), pp. 823–836.
  • Sterpi, D., Cividini, A., Sakurai, S., & Nishitake, S. (1996). Laboratory model tests and numerical analysis of shallow tunnels. Proceedings of the International Symposium on Eurock ’96 –IRSM, Torino, Vol. 1, pp. 689–696.
  • Verruijt, A., & Booker, J. R. (1996). Surface settlements due to deformation of a tunnel in an elastic half plane. Géotechnique, 46(4), 753–756. https://doi.org/10.1680/geot.1996.46.4.753
  • Viggiani, M. B. G., & Soccodato, F. M. (2004). Predicting tunnelling-induced displacements and associated damage to structures. Italian Geotechnical Journal, 38, 11–25.
  • Vorster, T. E. B., Klar, A., Soga, K., & Mair, R. J. (2005). Estimating the effects of tunnelling on existing pipelines. Journal of Geotechnical and Geoenvironmental Engineering, 131(11), 1399–1410. https://doi.org/10.1061/(ASCE)1090-0241(2005)131:11(1399)
  • Wongsaroj, J. (2005). Three-dimensional finite element analysis of short and long-term ground response to open-face tunnelling in stiff clay [PhD thesis]. University of Cambridge.
  • Xu, Q., Zhu, H., Ding, W., & Ge, X. (2011). Laboratory model tests and field investigations of EPB shield machine tunneling in soft ground in Shanghai. Tunnelling and Underground Space Technology, 26(1), 1–14. https://doi.org/10.1016/j.tust.2010.09.005
  • Yao, J., McNamara, A., & Taylor, R. (2008). The effects of loaded bored piles on existing tunnels. In Proceedings of the 6th International Symposium Geotechnical Aspects of Underground Construction in Soft Ground, Charles W. W. Ng, H. W. Huang, G. B. Liu (eds.), (pp. 735–741). Taylor & Francis.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.