158
Views
2
CrossRef citations to date
0
Altmetric
Original Articles

Experimental characterization of desiccation cracking mechanisms in clayey soils

ORCID Icon, ORCID Icon, , ORCID Icon, ORCID Icon &
Pages 3380-3401 | Received 22 May 2022, Accepted 10 Oct 2022, Published online: 21 Oct 2022

References

  • Abu-Hejleh, A. N., & Znidarcic, D. (1995). Desiccation theory for soft cohesive soils. Journal of Geotechnical Engineering, 121(6), 493–502. https://doi.org/10.1061/(ASCE)0733-9410(1995)121:6(493)
  • Al-Jeznawi, D., Sanchez, M., & Al-Taie, A. J. (2021). Using image analysis technique to study the effect of boundary and environment conditions on soil cracking mechanism. Geotechnical and Geological Engineering, 39(1), 25–36. https://doi.org/10.1007/s10706-020-01376-5
  • Amarasiri, A. L., Costa, S., & Kodikara, J. K. (2011). Determination of cohesive properties for mode I fracture from compacted clay beams. Canadian Geotechnical Journal, 48(8), 1163–1173. https://doi.org/10.1139/t11-031
  • Bin, S., Chao-sheng, T. A. N. G., Bao-jun, W. A. N. G., & Hong-tao, J. I. A. N. G. (2009). Development and mechanism of desiccation cracking of clayey soil under different temperatures. Geological Journal of China Universities, 15(2), 192.
  • Boivin, P. (2007). Anisotropy, cracking, and shrinkage of vertisol samples Experimental study and shrinkage modeling. Geoderma, 138(1-2), 25–38. https://doi.org/10.1016/j.geoderma.2006.10.009
  • Chauhan, P., El Hajjar, A., Prime, N., & Plé, O. (2019). Unsaturated behavior of rammed earth: Experimentation towards numerical modelling. Construction and Building Materials, 227, 116646. https://doi.org/10.1016/j.conbuildmat.2019.08.027
  • Cheng, W. Q., Yang, Z., Hattab, M., Bian, H., Bouchemella, S., & Fleureau, J. M. (2021). Free desiccation shrinkage process in clayey soils. European Journal of Environmental and Civil Engineering, 1–26. https://doi.org/10.1080/19648189.2021.1942223
  • Chertkov, V. Y. (2002). Modelling cracking stages of saturated soils as they dry and shrink. European Journal of Soil Science, 53(1), 105–118. https://doi.org/10.1046/j.1365-2389.2002.00430.x
  • Chertkov, V. Y., Ravina, I., & Zadoenko, V. (2004). An approach for estimating the shrinkage geometry factor at a moisture content. Soil Science Society of America Journal, 68(6), 1807–1817. https://doi.org/10.2136/sssaj2004.1807
  • Costa, S., & Kodikara, J. (2012). Evaluation of J integral for clay soils using a new ring test. Geotechnical Testing Journal, 35(6), 104271–104989. https://doi.org/10.1520/GTJ104271
  • Costa, S., Htike, W. Y., Kodikara, J., & Xue, J. (2016). Determination of J-integral for clay during desiccation. Environnemental Geotechnics, 3(6), 372–378. https://doi.org/10.1680/envgeo.14.00029
  • Costa, S., Kodikara, J., Barbour, S. L., & Fredlund, D. G. (2018). Theoretical analysis of desiccation crack spacing of a thin, long soil layer. Acta Geotechnica, 13(1), 39–49. https://doi.org/10.1007/s11440-017-0602-9
  • DeCarlo, K. F., & Shokri, N. (2014). Effects of substrate on cracking patterns and dynamics in desiccating clay layers. Water Resources Research, 50(4), 3039–3051. https://doi.org/10.1002/2013WR014466
  • DeGarmo, E. P., Black, J. T., Kohser, R. A., & Klamecki, B. E. (1997). Materials and process in manufacturing. Prentice Hall.
  • Eid, J. (2018). New construction material based on raw earth: Cracking mechanisms, corrosion phenomena and physico-chemical interactions. European Journal of Environmental and Civil Engineering, 22(12), 1522–1537. https://doi.org/10.1080/19648189.2017.1373707
  • Eid, J., Taibi, S., Fleureau, J. M., & Hattab, M. (2015). Drying, cracks and shrinkage evolution of a natural silt intended for a new earth building material. Impact of reinforcement. Construction and Building Materials, 86, 120–132. https://doi.org/10.1016/j.conbuildmat.2015.03.115
  • El Hajjar, A. (2020). Contribution to the study of clay desiccation: Simultaneous analysis of strain and stress fields [Doctoral dissertation, Normandie].
  • El Hajjar, A., Eid, J., Ouahbi, T., & Taibi, S. (2019). Risk of damage and desiccation cracking of construction materials based on raw earth. MATEC Web of Conferences, 281, 01018. https://doi.org/10.1051/matecconf/201928101018
  • El Hajjar, A., Ouahbi, T., Eid, J., Hattab, M., & Taibi, S. (2020). Shrinkage cracking of unsaturated fine soils: New experimental device and measurement techniques. Strain, 56(6), e12352. https://doi.org/10.1111/str.12352
  • El Hajjar, A., Ouahbi, T., Taibi, S., Eid, J., Hattab, M., & Fleureau, J. M. (2021). Assessing crack initiation and propagation in flax fiber reinforced clay subjected to desiccation. Construction and Building Materials, 278, 122392. https://doi.org/10.1016/j.conbuildmat.2021.122392
  • Fleureau, J. M., Kheirbek-Saoud, S., Soemitro, R., & Taibi, S. (1993). Behavior of clayey soils on drying-wetting paths. Canadian Geotechnical Journal, 30(2), 287–296. https://doi.org/10.1139/t93-024
  • Hammad, T., Fleureau, J. M., & Hattab, M. (2013). Kaolin/montmorillonite mixtures behaviour on oedometric path and microstructural variations. European Journal of Environmental and Civil Engineering, 17(9), 826–840. https://doi.org/10.1080/19648189.2013.822428
  • Hedan, S., Valle, V., & Cosenza, P. (2020). Subpixel precision of crack lip movements by Heaviside‐based digital image correlation for a mixed‐mode fracture. Strain, 56(6), e12346. https://doi.org/10.1111/str.12346
  • Hendricks, S. B. (1942). Lattice structure of clay minerals and some properties of clays. The Journal of Geology, 50(3), 276–290. https://doi.org/10.1086/625051
  • Horn, R., & Dexter, A. R. (1989). Dynamics of soil aggregation in an irrigated desert loess. Soil and Tillage Research, 13(3), 253–266. https://doi.org/10.1016/0167-1987(89)90002-0
  • Imanzadeh, S., Jarno, A., Hibouche, A., Bouarar, A., & Taibi, S. (2020). Ductility analysis of vegetal-fiber reinforced raw earth concrete by mixture design. Construction and Building Materials, 239, 117829. https://doi.org/10.1016/j.conbuildmat.2019.117829
  • Irwin, G. R. (1948). Fracture dynamics. Fracturing of metals (p. 296). American Society of Metals.
  • Jones, E. M., & Iadicola, M. A. (2018). A good practices guide for digital image correlation. International Digital Image Correlation Society.
  • Khatun, T., Dutta, T., & Tarafdar, S. (2015). Topology of desiccation crack patterns in clay and invariance of crack interface area with thickness. The European Physical Journal E, 38(8), 1–11. https://doi.org/10.1140/epje/i2015-15083-6
  • Konrad, J. M., & Ayad, R. (1997). An idealized framework for the analysis of cohesive soils undergoing desiccation. Canadian Geotechnical Journal, 34(4), 477–488. https://doi.org/10.1139/t97-015
  • Konrad, J. M., & Ayad, R. (1997). Desiccation of a sensitive clay: Field experimental observations. Canadian Geotechnical Journal, 34(6), 929–942. https://doi.org/10.1139/t97-063
  • Krisdani, H., Rahardjo, H., & Leong, E. C. (2008). Effects of different drying rates on shrinkage characteristics of a residual soil and soil mixtures. Engineering Geology, 102(1-2), 31–37. https://doi.org/10.1016/j.enggeo.2008.07.003
  • Lakshmikantha, M. R., Prat, P. C., & Ledesma, A. (2012). Experimental evidence of size effect in soil cracking. Canadian Geotechnical Journal, 49(3), 264–284. https://doi.org/10.1139/t11-102
  • Lu, Y., Liu, S., Weng, L., Wang, L., Li, Z., & Xu, L. (2016). Fractal analysis of cracking in a clayey soil under freeze–thaw cycles. Engineering Geology, 208, 93–99. https://doi.org/10.1016/j.enggeo.2016.04.023
  • Mohammad, N., Meng, W., Zhang, Y., Liu, M., El-Zein, A., & Gan, Y. (2020). Desiccation crack formation and prevention in thin bentonite layers. Environmental Geotechnics, 40, 1–15.
  • Nahlawi, H., & Kodikara, J. K. (2006). Laboratory experiments on desiccation cracking of thin soil layers. Geotechnical and Geological Engineering, 24(6), 1641–1664. https://doi.org/10.1007/s10706-005-4894-4
  • Pacheco-Torgal, F., & Jalali, S. (2012). Earth construction: Lessons from the past for future eco-efficient construction. Construction and Building Materials, 29, 512–519. https://doi.org/10.1016/j.conbuildmat.2011.10.054
  • Peron, H., Hueckel, T., Laloui, L., & Hu, L. (2009). Fundamentals of desiccation cracking of fine-grained soils: Experimental characterisation and mechanisms identification. Canadian Geotechnical Journal, 46(10), 1177–1201. https://doi.org/10.1139/T09-054
  • Rhaiem, H. B., Tessier, D., & Pons, C. H. (1986). Comportement hydrique et évolution structurale et texturale des montmorillonites au tours d‘un cycle de dessiccation-humectation: partie I. Cas des montmorillonites calciques. Clay Minerals, 21(1), 9–29. https://doi.org/10.1180/claymin.1986.021.1.02
  • Schreier, H., Orteu, J. J., & Sutton, M. A. (2009). Image correlation for shape, motion and deformation measurements: Basic concepts, theory and applications (Vol. 1). Springer-Verlag US.
  • Soemitro, R. A. A. (1994). Contribution à l‘étude du rôle de la pression interstitielle négative dans le gonflement et d‘autres aspects du comportement des sols non saturés [Thèse de doctorat, Ecole Centrale Paris].
  • Souli, H., Fleureau, J. M., Trabelsi-Ayadi, M., & Kbir-Ariguib, N. (2004). Etude hydromécanique et physicochimique d‘une montmorillonite pour barrière anti-pollution. Conférence JNGG, Lille (pp. 175–182).
  • Tang, C. S., Cui, Y. J., Tang, A. M., & Shi, B. (2010). Experiment evidence on the temperature dependence of desiccation cracking behavior of clayey soils. Engineering Geology, 114(3-4), 261–266. https://doi.org/10.1016/j.enggeo.2010.05.003
  • Tang, C. S., Shi, B., Liu, C., Wang, B. J., & Gao, W. (2007). Developing law and morphological analysis of shrinkage cracks of clayey soil under different temperatures. Yantu Gongcheng Xuebao (Chinese Journal of Geotechnical Engineering), 29(5), 743–749.
  • Tang, C., Shi, B., Liu, C., Zhao, L., & Wang, B. (2008). Influencing factors of geometrical structure of surface shrinkage cracks in clayey soils. Engineering Geology, 101(3-4), 204–217. https://doi.org/10.1016/j.enggeo.2008.05.005
  • Tollenaar, R. N., Van Paassen, L. A., & Jommi, C. (2017). Observations on the desiccation and cracking of clay layers. Engineering Geology, 230, 23–31. https://doi.org/10.1016/j.enggeo.2017.08.022
  • Trabelsi, H., Jamei, M., Zenzri, H., & Olivella, S. (2012). Crack patterns in clayey soils: Experiments and modeling. International Journal for Numerical and Analytical Methods in Geomechanics, 36(11), 1410–1433. https://doi.org/10.1002/nag.1060
  • Tran, D. K., Ralaizafisoloarivony, N., Charlier, R., Mercatoris, B., Léonard, A., Toye, D., & Degré, A. (2019). Studying the effect of desiccation cracking on the evaporation process of a luvisol–from a small-scale experimental and numerical approach. Soil and Tillage Research, 193, 142–152. https://doi.org/10.1016/j.still.2019.05.018
  • Uday, K. V., & Singh, D. N. (2013). Investigation on cracking characteristics of fine-grained soils under varied environmental conditions. Drying Technology, 31(11), 1255–1266. https://doi.org/10.1080/07373937.2013.785433
  • Wei, X. (2014). Etude micro-macro de la fissuration des argiles soumises à la dessiccation [Thèse de doctorat, Ecole Centrale de Paris].
  • Wei, X., Bicalho, K. V., El Hajjar, A., Taibi, S., Hattab, M., & Fleureau, J. M. (2021). Experimental techniques for the study of the cracking mechanisms in drying clays. Geotechnical Testing Journal, 44(2), 20190430. https://doi.org/10.1520/GTJ20190430
  • Wei, X., Hattab, M., Bompard, P., & Fleureau, J. M. (2016). Highlighting some mechanisms of crack formation and propagation in clays on drying path. Géotechnique, 66(4), 287–300. https://doi.org/10.1680/jgeot.14.P.227
  • Whitaker, S., & Chou, W. T. (1983). Drying granular porous media-theory and experiment. Drying Technology, 1(1), 3–33. https://doi.org/10.1080/07373938308916768
  • Zaidi, M., Ahfir, N. D., Alem, A., Taibi, S., El Mansouri, B., Zhang, Y., & Wang, H. (2021). Use of X-ray computed tomography for studying the desiccation cracking and self-healing of fine soil during drying–wetting paths. Engineering Geology, 292, 106255. https://doi.org/10.1016/j.enggeo.2021.106255
  • Zeng, H., Tang, C. S., Cheng, Q., Inyang, H. I., Rong, D. Z., Lin, L., & Shi, B. (2019). Coupling effects of interfacial friction and layer thickness on soil desiccation cracking behavior. Engineering Geology, 260, 105220. https://doi.org/10.1016/j.enggeo.2019.105220
  • Zeng, H., Tang, C. S., Cheng, Q., Zhu, C., Yin, L. Y., & Shi, B. (2020). Drought‐induced soil desiccation cracking behavior with consideration of basal friction and layer thickness. Water Resources Research, 56(7), e2019WR026948. https://doi.org/10.1029/2019WR026948
  • Zhang, X., & Nowamooz, H. (2021). Thermo-hydro-mechanical (THM) behavior of Unstabilized Rammed Earth (URE) wall submitted to environmental and mechanical loadings. Materials and Structures, 54(5), 1–22. https://doi.org/10.1617/s11527-021-01798-4
  • Zienkiewicz, O. C. (1977). The finite element method (3d expanded and rev. ed.). McGraw-Hill.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.