87
Views
2
CrossRef citations to date
0
Altmetric
Original Articles

A binary-medium-based constitutive model for geological materials based on the statistical meso-breakage concept and mean-field homogenization

, &
Pages 3425-3448 | Received 22 Feb 2022, Accepted 11 Oct 2022, Published online: 22 Oct 2022

References

  • Bornert, M., Bretheau, T., & Gilormini, P. (2001). Homogénéisation en mécanique des matériaux (vol. 1). Hermès Science Publications.
  • Chaboche, J.-L. (1981). Continuous damage mechanics: A tool to describe phenomena before crack initiation. Nuclear Engineering & Design, 64(2), 233–247. https://doi.org/10.1016/0029-5493(81)90007-8
  • Dafalias, Y. F. (1986). Bounding surface plasticity. I: Mathematical foundation and hypoplasticity. Journal of Engineering Mechanics, 112(9), 966–987. https://doi.org/10.1061/(ASCE)0733-9399(1986)112:9(966)
  • Dafalias, Y. F., & Popov, E. P. (1975). A model of nonlinearly hardening materials for complex loading. Acta Mechanica, 21(3), 173–192. https://doi.org/10.1007/BF01181053
  • Davison, L., & Stevens, A. L. (1973). Thermomechanical constitution of spalling elastic bodies. Journal of Applied Physics, 44(2), 668–674. https://doi.org/10.1063/1.1662242
  • Deng, J., & Gu, D. (2011). On a statistical damage constitutive model for rock materials. Computers & Geosciences, 37(2), 122–128. https://doi.org/10.1016/j.cageo.2010.05.018
  • Desai, C. S. (2000). Mechanics of materials and interfaces: The disturbed state concept. CRC Press. https://doi.org/10.1201/9781420041910
  • Desai, C. S., & Ma, Y. (1992). Modelling of joints and interfaces using the disturbed-state concept. International Journal for Numerical & Analytical Methods in Geomechanics, 16(9), 623–653. https://doi.org/10.1002/nag.1610160903
  • Doghri, I., & Ouaar, A. (2003). Homogenization of two-phase elasto-plastic composite materials and structures. International Journal of Solids & Structures, 40(7), 1681–1712. https://doi.org/10.1016/S0020-7683(03)00013-1
  • Dragon, A., & Mróz, Z. (1979). A continuum model for plastic–brittle behaviour of rock and concrete. International Journal of Engineering Science, 17(2), 121–137. https://doi.org/10.1016/0020-7225(79)90058-2
  • Eshelby, J. D., & Peierls, R. E. (1959). The elastic field outside an ellipsoidal inclusion. Proceedings of the Royal Society of London. Series A. Mathematical & Physical Sciences, 252, 561––569. https://doi.org/10.1098/rspa.1959.0173
  • Eshelby, J. D., & Peierls, R. E. (1957). The determination of the elastic field of an ellipsoidal inclusion, and related problems. Proceedings of the Royal Society of London. Series A: Mathematical & Physical Sciences, 241, 376––396. https://doi.org/10.1098/rspa.1957.0133
  • Farhat, F., Shen, W. Q., Xie, S. Y., Shao, J. F., Pourpak, H., & Su, K. (2020). A three-scale micro-mechanical model for elastic–plastic damage modeling of shale rocks. Acta Geotechnica, 15(12), 3525–3543. https://doi.org/10.1007/s11440-020-00983-z
  • Gao, Z., & Zhao, J. (2012). Constitutive modeling of artificially cemented sand by considering fabric anisotropy. Computers & Geotechnics, 41, 57–69. https://doi.org/10.1016/j.compgeo.2011.10.007
  • Gens, A., & Nova, R. (1993). Conceptual bases for a constitutive model for bonded soils and weak rocks (pp. 485–494).
  • Hashiguchi, K. (2016). Exact formulation of subloading surface model: Unified constitutive law for irreversible mechanical phenomena in solids. Archives of Computational Methods in Engineering, 23(3), 417–447. https://doi.org/10.1007/s11831-015-9148-x
  • Hashiguchi, K. (1989). Subloading surface model in unconventional plasticity. International Journal of Solids & Structures, 25(8), 917–945. https://doi.org/10.1016/0020-7683(89)90038-3
  • Hori, M., & Nemat-Nasser, S. (1993). Double-inclusion model and overall moduli of multi-phase composites. Mechanics of Materials, 14(3), 189–206. https://doi.org/10.1016/0167-6636(93)90066-Z
  • Jiang, T., Shao, J. F., & Xu, W. Y. (2013). A non-uniform transformation field analysis for frictional cohesive geomaterials. European Journal of Mechanics – A/Solids, 42, 97–111. https://doi.org/10.1016/j.euromechsol.2013.04.004
  • Ju, J. W. (1989). On energy-based coupled elastoplastic damage theories: Constitutive modeling and computational aspects. International Journal of Solids & Structures, 25(7), 803–833. https://doi.org/10.1016/0020-7683(89)90015-2
  • Kachanov, L. M. (1958). Time of the rupture process under creep conditions. Izy Akad. Nank S. S. R. Otd Tech Nauk, 8, 26–31.
  • Kavvadas, M., & Amorosi, A. (2000). A constitutive model for structured soils. Géotechnique, 50(3), 263–273. https://doi.org/10.1680/geot.2000.50.3.263
  • Kawamoto, T., Ichikawa, Y., & Kyoya, T. (1988). Deformation and fracturing behaviour of discontinuous rock mass and damage mechanics theory. International Journal for Numerical & Analytical Methods in Geomechanics, 12(1), 1–30. https://doi.org/10.1002/nag.1610120102
  • Kolymbas, D. (1991). An outline of hypoplasticity. Archive of Applied Mechanics, 61(3), 143–151. https://doi.org/10.1007/BF00788048
  • Krajcinovic, D. (1989). Damage mechanics. Mechanics of Materials, 8(2–3), 117–197. https://doi.org/10.1016/0167-6636(89)90011-2
  • Lade, P. V., & Kim, M. K. (1995). Single hardening constitutive model for soil, rock and concrete. International Journal of Solids & Structures, 32(14), 1963–1978. https://doi.org/10.1016/0020-7683(94)00247-T
  • Lemaitre, J. (2012). A course on damage mechanics. Springer Science & Business Media.
  • Liu, E. (2006). Study on breakage mechanism of structural blocks and the binary-medium model for geomaterials [PhD thesis]. Tsinghua University.
  • Liu, E. L., & Xing, H. L. (2009). A double hardening thermo-mechanical constitutive model for overconsolidated clays. Acta Geotechnica, 4(1), 1–6. https://doi.org/10.1007/s11440-008-0053-4
  • Liu, E.-L., Yu, H.-S., Zhou, C., Nie, Q., & Luo, K.-T. (2017). A binary-medium constitutive model for artificially structured soils based on the disturbed state concept and homogenization theory. International Journal of Geomechanics, 17(7), 04016154. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000859
  • Liu, M. D., & Carter, J. P. (2002). A structured Cam clay model. Canadian Geotechnical Journal, 39(6), 1313–1332. https://doi.org/10.1139/t02-069
  • Liu, M. D., & Indraratna, B. N. (2011). General strength criterion for geomaterials including anisotropic effect. International Journal of Geomechanics, 11(3), 251–262. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000082
  • Liu, Y., Liu, E., & Yin, Z. (2020). Constitutive model for tailing soils subjected to freeze–thaw cycles based on meso-mechanics and homogenization theory. Acta Geotechnica, 15(9), 2433–2450. https://doi.org/10.1007/s11440-020-00937-5
  • Lubarda, V. A., & Krajcinovic, D. (1995). Some fundamental issues in rate theory of damage-elastoplasticity. International Journal of Plasticity, 11(7), 763–797. https://doi.org/10.1016/S0749-6419(95)00029-1
  • Mayne, P. W., Coop, M. R., Springman, S. M., Huang, A.-B., & Zornberg, J. G. (2009). Geomaterial behavior and testing [Paper presentation]. Proceedings of the 17th International Conference on Soil Mechanics and Geotechnical Engineering (Vols.1–4). 2777–2872. https://doi.org/10.3233/978-1-60750-031-5-2777
  • Mitchell, J. K., & Soga, K. (2005). Fundamentals of soil behavior.
  • Morin, C., Vass, V., & Hellmich, C. (2017). Micromechanics of elastoplastic porous polycrystals: Theory, algorithm, and application to osteonal bone. International Journal of Plasticity, 91, 238–267. https://doi.org/10.1016/j.ijplas.2017.01.009
  • Mura, T. (1987). Micromechanics of defects in solids (2nd ed.). Mechanics of elastic and inelastic solids. Springer. https://doi.org/10.1007/978-94-009-3489-4
  • Nemat-Nasser, S., & Hori, M. (1993). Micromechanics: Overall properties of heterogeneous materials. North-Holland Series in Applied Mathematics & Mechanics.
  • Novello, E. A., & Johnston, L. W. (1995). Geotechnical materials and the critical state. Géotechnique, 45(2), 223–235. https://doi.org/10.1680/geot.1995.45.2.223
  • Roscoe, K. H., & Burland, J. B. (1968). On the generalized stress–strain behaviour of wet clay.
  • Salari, M. R., Saeb, S., Willam, K. J., Patchet, S. J., & Carrasco, R. C. (2004). A coupled elastoplastic damage model for geomaterials. Computer Methods in Applied Mechanics & Engineering, Computational Failure Mechanics for Geomaterials, 193(27–29), 2625–2643. https://doi.org/10.1016/j.cma.2003.11.013
  • Schofield, A. N., & Wroth, P. (1968). Critical state soil mechanics. McGraw-Hill.
  • Shen, W., & Shao, J. (2015). A micro–macro model for porous geomaterials with inclusion debonding. International Journal of Damage Mechanics, 24(7), 1026–1046. https://doi.org/10.1177/1056789514560915
  • Shen, Z. (2002). Breakage mechanics and double-medium model for geological materials. Hydroscience & Engineering, 4, 1–6.
  • Shen, Z.-J. (2006). Progress in binary medium modeling of geological materials. In W. Wu & H.-S. Yu (Eds.), Modern trends in geomechanics, Springer proceedings in physics (pp. 77–99). Springer. https://doi.org/10.1007/978-3-540-35724-7_5
  • Swoboda, G., Shen, X. P., & Rosas, L. (1998). Damage model for jointed rock mass and its application to tunnelling. Computers & Geotechnics, 22(3–4), 183–203. https://doi.org/10.1016/S0266-352X(98)00009-3
  • Wang, D., Liu, E., Zhang, D., Yue, P., Wang, P., Kang, J., & Yu, Q. (2021). An elasto-plastic constitutive model for frozen soil subjected to cyclic loading. Cold Regions Science & Technology, 189, 103341. https://doi.org/10.1016/j.coldregions.2021.103341
  • Wang, P., Liu, E., Song, B., Liu, X., Zhang, G., & Zhang, D. (2019). Binary medium creep constitutive model for frozen soils based on homogenization theory. Cold Regions Science & Technology, 162, 35–42. https://doi.org/10.1016/j.coldregions.2019.03.019
  • Wang, P., Liu, E., & Zhi, B. (2021). An elastic–plastic model for frozen soil from micro to macro scale. Applied Mathematical Modelling, 91, 125–148. https://doi.org/10.1016/j.apm.2020.09.039
  • Wang, Z., Li, Y., & Wang, J. G. (2007). A damage-softening statistical constitutive model considering rock residual strength. Computers & Geosciences, 33(1), 1–9. https://doi.org/10.1016/j.cageo.2006.02.011
  • Weibull, W. (1951). A statistical distribution function of wide applicability. Journal of Applied Mechanics, 18(3), 293–297. https://doi.org/10.1115/1.4010337
  • Xie, S., Lin, H., Wang, Y., Chen, Y., Xiong, W., Zhao, Y., & Du, S. (2020). A statistical damage constitutive model considering whole joint shear deformation. International Journal of Damage Mechanics, 29(6), 988–1008. https://doi.org/10.1177/1056789519900778
  • Yang, C., Carter, J. P., & Sheng, D. (2014). Description of compression behaviour of structured soils and its application. Canadian Geotechnical Journal, 51(8), 921–933. https://doi.org/10.1139/cgj-2013-0265
  • Yao, Y.-P., Hou, W., & Zhou, A.-N. (2009). UH model: three-dimensional unified hardening model for overconsolidated clays. Géotechnique, 59(5), 451–469. https://doi.org/10.1680/geot.2007.00029
  • Yao, Y. P., Niu, L., & Cui, W. J. (2014). Unified hardening (UH) model for overconsolidated unsaturated soils. Canadian Geotechnical Journal, 51(7), 810–821. https://doi.org/10.1139/cgj-2013-0183
  • Yu, D., Liu, E., Sun, P., Xiang, B., & Zheng, Q. (2020). Mechanical properties and binary-medium constitutive model for semi-through jointed mudstone samples. International Journal of Rock Mechanics & Mining Sciences, 132, 104376. https://doi.org/10.1016/j.ijrmms.2020.104376
  • Yu, H., & Liu, E. (2022). A binary-medium-based constitutive model for artificially cemented gravel–silty clay mixed soils. European Journal of Environmental & Civil Engineering, 26(12), 5773–5797. https://doi.org/10.1080/19648189.2021.1917455
  • Zhang, D., & Liu, E. (2019). Binary-medium-based constitutive model of frozen soils subjected to triaxial loading. Results in Physics, 12, 1999–2008. https://doi.org/10.1016/j.rinp.2019.02.029
  • Zhang, D., Liu, E., & Yu, D. (2020). A micromechanics-based elastoplastic constitutive model for frozen sands based on homogenization theory. International Journal of Damage Mechanics, 29(5), 689–714. https://doi.org/10.1177/1056789519891519
  • Zhao, J. J., Shen, W. Q., Shao, J. F., Liu, Z. B., & Vu, M. N. (2022). A constitutive model for anisotropic clay-rich rocks considering micro-structural composition. International Journal of Rock Mechanics & Mining Sciences, 151, 105029. https://doi.org/10.1016/j.ijrmms.2021.105029
  • Zhao, L.-Y., Shao, J.-F., Zhu, Q.-Z., Liu, Z.-B., & Yurtdas, I. (2019). Homogenization of rock-like materials with plastic matrix based on an incremental variational principle. International Journal of Plasticity, 123, 145–164. https://doi.org/10.1016/j.ijplas.2019.07.015
  • Zhu, Q. Z., & Shao, J. F. (2015). A refined micromechanical damage–friction model with strength prediction for rock-like materials under compression. International Journal of Solids & Structures, 60–61, 75–83. https://doi.org/10.1016/j.ijsolstr.2015.02.005

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.