357
Views
4
CrossRef citations to date
0
Altmetric
Original Articles

Strength and durability study of low-fines self-consolidating concrete as a pavement material using fly ash and bagasse ash

ORCID Icon & ORCID Icon
Pages 3507-3524 | Received 22 Jun 2022, Accepted 18 Oct 2022, Published online: 04 Nov 2022

References

  • Abdullah, G. M. S., Alshaikh, I. M. H., Zeyad, A. M., Magbool, H. M., & Abu Bakar, B. H. (2022). The effect of openings on the performance of self-compacting concrete with volcanic pumice powder and different steel fibers. Case Studies in Construction Materials, 17, e01148. https://doi.org/10.1016/j.cscm.2022.e01148
  • Abouhussien, A. A., Hassan, A. A. A., & Ismail, M. K. (2015). Properties of semi-lightweight self-consolidating concrete containing lightweight slag aggregate. Construction and Building Materials, 75, 63–73. http://dx.doi.org/10.1016/j.conbuildmat.2014.10.028
  • Agwa, I. S., Zeyad, A. M., Tayeh, B. A., Adesina, A., Azevedo, A. R. G., Amin, M., & Hadzima-Nyarko, M. (2022b). A comprehensive review on the use of sugarcane bagasse ash as a supplementary cementitious material to produce eco-friendly concretes. Materials Today: Proceedings, 65, 688–696. https://doi.org/10.1016/j.matpr.2022.03.264
  • Agwa, I. S., Zeyad, A. M., Tayeh, B. A., & Amin, M. (2022a). Effect of different burning degrees of sugarcane leaf ash on the properties of ultrahigh-strength concrete. Journal of Building Engineering, 56, 104773. https://doi.org/10.1016/j.jobe.2022.104773
  • Ahmaruzzaman, M. (2010). A review on the utilization of fly ash. Progress in Energy and Combustion Science, 36(3), 327–363. https://doi.org/10.1016/j.pecs.2009.11.003
  • Akram, T., Memon, S. A., & Obaid, H. (2009). Production of low cost self-compacting concrete using bagasse ash. Construction and Building Materials, 23(2), 703–712. https://doi.org/10.1016/j.conbuildmat.2008.02.012
  • Amin, N. (2011). Use of bagasse ash in concrete and its impact on the strength and chloride resistivity. Journal of Materials in Civil Engineering, 23(5), 717–720. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000227
  • ASTM C 1202 (1994). Standard test method for electrical indication of concrete’s ability to resist chloride ion penetration. Annual Book of ASTM Standards. ASTM International.
  • ASTM C 140 (2021). Standard test methods for sampling and testing concrete masonry units and related units. ASTM International.
  • Azevedo, A. R. G., Amin, M., Hadzima-Nyarko, M., Agwa, I. S., Zeyad, A. M., Tayeh, B. A., & Adesina, A. (2022). Possibilities for the application of agro-industrial astes in cementitious materials: A brief review of the Brazilian perspective. Cleaner Materials, 3, 100040. https://doi.org/10.1016/j.clema.2021.100040
  • Bagade, S. (2015). Role of smart dynamic concrete in affordable housing. ICI Journal, 1, 24–31.
  • Bagade, S., & D’Souza, B. (2016). Smart dynamic concrete- innovation concept for mass housing concrete application. Built Construction, Sustainability in Construction, 1–8.
  • Balakrishnan, P., Adhithyavijay, G., & Mohankumar, G. (2016). A study on smart dynamic concrete-a new dimensional SCC. International Journal of Science and Engineering Research, 7(4), 251–263.
  • Bauchkar, S. D., & Chore, H. S. (2018). Effect of poly carboxylate ether (PCE), increase in water contents and paste contents on rheological properties of smart dynamic concrete [Paper presentation]. Proceedings National Conference on Advanced Structures, Materials and Methodology in Civil Engineering (ASMMCE-2018), 78–87.
  • Bauchkar, S. D., & Chore, H. S. (2014). Rheological properties of self consolidating concrete with various mineral admixtures. Structural Engineering and Mechanics, 51(1), 1–13. http://dx.doi.org/10.12989/sem.2014.51.1.001
  • Bauchkar, S. D., & Chore, H. S. (2017). Experimental studies on rheological properties of smart dynamic concrete. Advanced Concrete Construction, 5(3), 183–199. https://doi.org/10.12989/acc.2017.5.3.183
  • Bauchkar, S. D., Chore, H. S., & Mukherjee, S. K. (2017). Rheological properties of smart dynamic concrete (SDC) containing different supplementary cementitious materials. Journal of Structural Engineering (JoSE), 44(6), 1–12.
  • Bruce, J. C., & Huebsch, C. (2012). Solutions to support more sustainable construction practices. ACI Special Publication, 289, 1–12.
  • Bruno, D., & Hironobu, Y. (2013). Applications of smart dynamic concrete [Paper presentation].Third International Conference on Sustainable Construction Materials and Technologies, August 18–21, 2013. Kyoto Research Park, Kyoto, Japan.
  • Bryan, B., Magarattom, R., Mara, S., & Khurana, R. (2011). Friendly self-compacting concrete. Concrete Plant International (Concrete Technology), 21, 60–66.
  • BS:1881 (1983). Testing concrete (Method for determination of water absorption, Part 122). British Standards Institution, BSI. 256.
  • Chi, M. (2012). Effects of sugar cane bagasse ash as a cement replacement on properties of mortars. Science and Engineering of Composite Materials, 19(3), 279–285. https://doi.org/10.1515/secm-2012-0014
  • Chore, H. S., & Joshi, M. P. (2020). Strength characterization of concrete using industrial waste as cement replacing materials for rigid pavement. Innovative Infrastructure Solutions, 5(3), 78. https://doi.org/10.1007/s41062-020-00328-5
  • Corradi, M., Kluegge, J., Kar, N., Christensen, B., & Yang, J. (2007). A new viscosity modifying agent (VMA) for low fines self-consolidating concrete [Paper presentation]. 5th International RILEM Symposium on Self-Compacting Concrete 2, 875–880.
  • Deepika, A. N., & Darshan, N. (2016). Experimental study on smart dynamic concrete with PPF and comparing among SDC, SCC and Conventional concrete. International Journal of Science Engineering and Technology Research. (IJSETR), 5(5), 1689–1694.
  • DIN:1048. (1991). Testing method for concrete – Harden concrete- German-standard or determination of permeability of concrete, Part 5. Deutsches Institute for Normunge, V.
  • EFNARC. (2005). European Guideline for Self-Compacting Concrete (SCC): Specification for Production and Use. European Federation of National Association representing for Concrete. UK.
  • Ganesan, K., Rajagopal, K., & Thangavel, K. (2007). Evaluation of bagasse ash as supplementary cementitious material. Cement and Concrete Composites, 29(6), 515–524. https://doi.org/10.1016/j.cemconcomp.2007.03.001
  • Gettu, R., Izqueirdo, J., Gomes, P., & Josa, A. (2022). Development of high-strength Self-consolidating concrete with fly ash: A four-step experimental methodology [Paper presentation]. 27th Conference on Our World in Concrete & Structures, Singapore.
  • Gupta, N., Siddique, R., & Belarbi, R. (2021). Sustainable and greener self-compacting concrete incorporating industrial by-products: a review. Journal of Cleaner Production, 284, 124803. https://doi.org/10.1016/j.jclepro.2020.124803
  • Hasnain, M. H., Javed, U., Ali, A., Saeed, M., & Saeed, Z. (2021). Eco-friendly utilization of rice husk ash and bagasse ash blend as partial sand replacement in self-compacting concrete. Construction and Building Materials, 273, 121753. https://doi.org/10.1016/j.conbuildmat.2020.121753
  • Iqbal, S., Irshad, M., Room, S., Mahmood, K., & Iqbal, Q. (2020). Performance evaluation of self-compacting concrete using bagasse ash and granite as partial replacement of cement and sand. Technical Journal, UET Taxila, 25(2), 1–8.
  • IRC:44. (2017). Guidelines for cement concrete mix design for pavement (second revision). Indian Roads Congress.
  • IS:2386. (1963). Methods of test for aggregates for concrete (Mechanical Properties, Part IV). Bureau of Indian Standards.
  • IS:2386. (1963). Methods of test for aggregates for concrete (Specific gravity, Density, Voids, Absorption and Bulking, Part III). Bureau of Indian Standards.
  • IS:3812. (2003). Pulverized fuel ash — specification (For use as pozzolana in cement, cement mortar and concrete, Part I) (Second Revision). Bureau of Indian Standards.
  • IS:383 (2016). Coarse and Fine Aggregate for Concrete — Specification (Third Revision). Bureau of Indian Standards.
  • IS:516. (1959). Methods of tests for strength of concrete. Bureau of Indian Standards.
  • IS:5816. (1999). Splitting tensile strength of concrete - method of test, (First Revision). Bureau of Indian Standards.
  • IS:7320. (1974). Specification for concrete slump test apparatus. Bureau of Indian Standards.
  • IS:8112. (2013). Ordinary Portland Cement 43 Grade — Specification (Second Revision). Bureau of Indian Standards.
  • Ismail, M. K., & Hassan, A. A. A. (2016). Influence of mixture composition and type of cementitious materials on enhancing the fresh properties and stability of self-consolidating rubberized concrete. Journal of Materials in Civil Engineering, 28(1), 04015075. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001338
  • Jafeer, R., & Roncero, J. (2009). Smart Dynamic Concrete – A new approach to ready mix industry [Paper presentation]. Advances in Cement-Based Materials, Proceeding of the International Conference on Advanced Concrete Materials – South Africa, 47–54.
  • Jalal, M., Ramezanianpour, A. A., & Pool, M. K. (2013). Splitting tensile strength of binary blended self-compacting concrete containing low volume fly ash and TiO2 nanoparticles. Composites Part B: Engineering, 55, 324–337. https://doi.org/10.1016/j.compositesb.2013.05.050
  • Jha, P., Sachan, A. K., & Singh, R. P. (2021). Agro-waste sugarcane bagasse ash (SCBA) as partial replacement of binder material in concrete. Materials Today: Proceedings, 44, 419–427. https://doi.org/10.1016/j.matpr.2020.09.751
  • Jiménez-Quero, V. G., León-Martínez, F. M., Montes-García, P., Gaona-Tiburcio, C., & Chacón-Nava, J. G. (2013). Influence of sugar-cane bagasse ash and fly ash on the rheological behaviour of cement pastes and mortars. Construction and Building Materials, 40, 691–701. http://dx.doi.org/10.1016/j.conbuildmat.2012.11.023
  • Jittin, V., Minnu, S. N., & Bahurudeen, A. (2021). Potential of sugarcane bagasse ash as supplementary cementitious material and comparison with currently used rice husk ash. Construction and Building Materials, 273, 121679. https://doi.org/10.1016/j.conbuildmat.2020.121679
  • Kannur, B., & Chore, H. S. (2021). Utilization of sugarcane bagasse ash as cement-replacing materials for concrete pavement: An overview. Innovative Infrastructure Solutions, 6(4), 184. https://doi.org/10.1007/s41062-021-00539-4
  • Khatun, A., Singh, K., & Sharma, R. (2018). Utilization of bagasse ash as a partial replacement of cement in self-compacting concrete. International Journal of Civil Engineering and Technology. 9, 1078–1088. http://iaeme.com/Home/issue/IJCIET?Volume=9&Issue=7
  • Kumar, S. S., & Angalekar, S. S. (2016). To study the hardened properties of SCC by effectiveness range of SCBA of different regions. International Research Journal of Engineering and Technology, 03, 260–265.
  • Lachemi, M., Bae, S., Hossain, K. M. A., & Sahmaran, M. (2009). Steel-concrete bond strength of lightweight self-consolidating concrete. Materials and Structures, 42(7), 1015–1023. https://doi.org/10.1617/s11527-008-9440-4
  • Le, D. H., Sheen, Y. N., & Lam, M. N. T. (2018). Fresh and hardened properties of self-compacting concrete with sugarcane bagasse ash–slag blended cement. Construction and Building Materials, 185, 138–147. https://doi.org/10.1016/j.conbuildmat.2018.07.029
  • Lomboy, G. R., Wang, K., Taylor, P., & Shah, S. P. (2011). Guidelines for design, testing, production and construction of semi-flowable SCC for slip-form paving. International Journal of Pavement Engineering, 13(3), 1–10. https://doi.org/10.1080/10298436.2011.610797
  • Magbool, H. M., & Zeyad, A. M. (2021). The effect of various steel fibers and volcanic pumice powder on fracture characteristics of Self-Compacting concrete. Construction and Building Materials, 312, 125444. https://doi.org/10.1016/j.conbuildmat.2021.125444
  • Manjunath, R., & Rahul, M. (2019). Studies on fresh and hardened properties of sugarcane bagasse ash blended self-compacting concrete mixes. In: Das, B., & Neithalath, N. (Eds.), Sustainable construction and building materials. Lecture Notes in Civil Engineering (vol. 25). Springer. https://doi.org/10.1007/978-981-13-3317-0_24
  • Minnu, S. N., Bahurudeen, A., & Athira, G. (2021). Comparison of sugarcane bagasse ash with fly ash and slag: An approach towards industrial acceptance of sugar industry waste in cleaner production of cement. Journal of Cleaner Production, 285, 124836. https://doi.org/10.1016/j.jclepro.2020.124836
  • Molin Filho, R. G. D., Longhi, D. A., D., Souza, R. C. T., Vanderlei, R. D., Paraíso, P. R., D. M., & Jorge, L. M. (2019). Study of the compressive and tensile strengths of self-compacting concrete with sugarcane bagasse ash. Revista IBRACON de Estruturas e Materiais, 12(4), 874–883. https://doi.org/10.1590/s1983-41952019000400009
  • Naik, T. R., Ramme, B. R., Kraus, R. N., & Siddique, R. (2003). Long-term performance of high-volume fly ash concrete pavements. ACI Materials Journal, 100(2), 150–155.
  • Naik, T. R., Ramme, B. W., & Tews, J. H. (1995). Pavement construction with high-volume class C and class F fly ash concrete. ACI Materials Journal, 92(2), 200–210.
  • Nilotpol, K., & Firth, D. (2012). Smart Dynamic Concrete – Economic, Ecological and Ergonomic [Paper presentation]. IQA-CCAA Construction Materials Industry Conference, 1–5.
  • Okamura, H., & Ouchi, M. (2003). Self-compacting concrete. Journal of Advanced Concrete Technology, 1(1), 5–15. https://doi.org/10.3151/jact.1.5
  • Sari, M., Prat, E., & Labastire, J. F. (1999). High strength self-compacting concrete original solutions associating organic and inorganic admixtures. Cement and Concrete Research, 29(6), 813–818. https://doi.org/10.1016/S0008-8846(99)00037-X
  • Schackow, A., Effting, C., Marcon Neto, D., Bonifácio, D. E., & Gomes, I. R. (2020). Properties of the self-compacting concrete with fly ashes. Revista de Engenharia Civil, 57, 26–35. http://www.civil.uminho.pt/revista.
  • Seow, K. H., Kar, N., & Qiuling, F. (2011). The use of low fines self-consolidating concrete (SCC) in everyday applications to improve productivity. SCI Concretes Magazine (Singapore Concrete Institute), 3(1), 4–6.
  • Shafiq, N., Hussein, A., A., E., Nuruddin, M. F., & Al Mattarneh, H. (2018). Effects of sugarcane bagasse ash on the properties of concrete. Proceedings of the Institution of Civil Engineers - Engineering Sustainability, 171(3), 123–132. https://doi.org/10.1680/jensu.15.00014
  • Sobolev, K., Habib, M. M., Hani, T., Titi, H., Pradoto, R., Kozhukhova, M., Flores-Vivian, I., & Muzenski, S. (2017). Class F fly ash assessment for use in concrete pavements. WisDOT ID no. 0092-1 5-1 0, Report No. WHRP 0092-15-10. https://doi.org/10.13140/RG.2.2.31345.17769
  • Solikin, M., & Mulyanto, T. (2020). Mechanical properties of self-compacting concrete incorporated with high volume fly ash. IOP Conference Series: Materials Science and Engineering, 821(1), 012019. https://doi.org/10.1088/1757-899X/821/1/012019
  • Sua-Iam, G., & Makul, N. (2014). Utilization of high volumes of unprocessed lignite-coal fly ash and rice husk ash in self-consolidating concrete. Journal of Cleaner Production, 78, 184–194. https://doi.org/10.1016/j.jclepro.2014.04.060
  • Yasser, K., & Bhagiratha, B. (2017). Self-consolidating concrete using recycled concrete aggregate and high volume of fly ash, and slag. Construction and Building Materials, 153, 307–316. https://doi.org/10.1016/j.conbuildmat.2017.07.063

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.