148
Views
1
CrossRef citations to date
0
Altmetric
Original Articles

Self-cooling mortar production with zinc oxide nanoparticles additive and investigation of the DC application when early-age hydration

ORCID Icon
Pages 3586-3602 | Received 29 Jun 2022, Accepted 29 Oct 2022, Published online: 23 Nov 2022

References

  • Adriano, P., Silva, A. S., Veiga, M. R., Mirão, J., & Candeias, A. E. (2008). The importance of SEM-EDS analysis in the study of old mortars. Microscopy and Microanalysis, 14(S3), 57–60. https://doi.org/10.1017/S1431927608089381
  • Akarsh, P. K., & Bhat, A. K. (2021). Graphene oxide incorporated concrete for rigid pavement application. In M. C. Narasimhan, V. George, G. Udayakumar, & A. Kumar (Eds.), Trends in civil engineering and challenges for sustainability. Lecture Notes in Civil Engineering (Vol. 99, pp. 199–219). Springer. https://doi.org/10.1007/978-981-15-6828-2_16
  • Ali, M. F., Rashed, M. T., Bari, M. A., & Razi, K. M. (2020). Effect of zinc oxide nanoparticle on properties of concrete. International Reserach Journal of Engineering and Technology (IRJET), 7(2), 1026–1029.
  • Anandaraj, S., Karthik, S., Vijaymohan, S., Rampradheep, G. S., Indhiradevi, P., & Anusha, G. (2022). Effects of using white flour, zinc oxide and zinc ash as an admixture in mortar and concrete. Materials Today: Proceedings, 52(3), 1788–1793. https://doi.org/10.1016/j.matpr.2021.11.447
  • Askarian, M., Fakhretaha, A., & Joshaghani, A. (2018). A comprehensive experimental study on the performance of pumice powder in self-compacting concrete (SCC). Journal of Sustainable Cement-Based Materials, 7(6), 340–356. http://dx.doi.org/10.1080/21650373.2018.1511486
  • ASTM C305-20. (2020). Standard practice for mechanical mixing of hydraulic cement pastes and mortars of plastic consistency. ASTM International. www.astm.org
  • ASTM C778-13. (2013). Standard specification for standard sand. ASTM International.
  • Bahari, A., Sadeghi Nik, A., Roodbari, M., Mirshafiei, E., & Amiri, B. (2015). Effect of silicon carbide nano dispersion on the mechanical and nano structural properties of cement. National Academy Science Letters, 38(4), 361–364. https://doi.org/10.1007/s40009-014-0316-6
  • Bahari, A., Sadeghi-Nik, A., Cerro-Prada, E., Sadeghı-Nik, A., Roodbari, M., & Zhuge, Y. (2021). One-step random-walk process of nanoparticles in cement-based materials. Journal of Central South University, 28(6), 1679–1691. https://doi.org/10.1007/s11771-021-4726-6
  • Bao, J., Li, S., Zhang, P., Xue, S., Cui, Y., & Zhao, T. (2020). Influence of exposure environments and moisture content on water repellency of surface impregnation of cement-based materials. Journal of Materials Research and Technology, 9(6), 12115–12125. https://doi.org/10.1016/j.jmrt.2020.08.046
  • Behfarnia, K., Keivan, A., & Keivan, A. (2013). The effects of TiO2 and ZnO nanoparticles on physical and mechanical properties of normal concrete. Asian Journal of Civil Engineering, 14(4), 517–531.
  • Chintalapudi, K., & Pannem, R. M. R. (2020). An intense review on the performance of graphene oxide and reduced graphene oxide in an admixed cement system. Construction and Building Materials, 259, 120598. https://doi.org/10.1016/j.conbuildmat.2020.120598
  • Chuah, S., Pan, Z., Sanjayan, J. G., Wang, C. M., & Duan, W. H. (2014). Nano reinforced cement and concrete composites and new perspective from graphene oxide. In Construction and Building Materials, 73, 113–124. https://doi.org/10.1016/j.conbuildmat.2014.09.040
  • Çınar, E., Uygunoğlu, T., Şimşek, B., & Topçu, İ. B. (2020). Effect of carbon black on electrical curing of fresh concrete for cold regions. Construction and Building Materials, 247, 118572. https://doi.org/10.1016/j.conbuildmat.2020.118572
  • Dabbaghi, F., Sadeghi-Nik, A., Libre, N. A., & Nasrollahpour, S. (2021). Characterizing fiber reinforced concrete incorporating zeolite and metakaolin as natural pozzolans. Structures, 34, 2617–2627. https://doi.org/10.1016/j.istruc.2021.09.025
  • Fakhretaha, S., Ardalan, R. B., Libre, N. A., Mehdipour, I., & Shekarchi, M. (2013). The effect of inert and pozzolanic powders on properties of self-consolidating mortar. In Proceedings of the Fifth North American Conference on the Design and Use of Self-Consolidating Concrete, Chicago, IL.
  • Fan, Z., & Lu, J. G. (2005). Zinc oxide nanostructures: Synthesis and properties. Journal of Nanoscience and Nanotechnology, 5(10), 1561–1573. https://doi.org/10.1166/jnn.2005.182
  • Fernández Olmo, I., Chacon, E., & Irabien, A. (2001). Influence of lead, zinc, iron (III) and chromium (III) oxides on the setting time and strength development of Portland cement. Cement and Concrete Research, 31(8), 1213–1219. https://doi.org/10.1016/S0008-8846(01)00545-2
  • García, Á., Castro-Fresno, D., & Polanco, J. A. (2008). Maturity approach applied to concrete by means of vicat tests. ACI Materials Journal, 105(5), 445–450. https://doi.org/10.14359/19973
  • Garg, R., & Garg, R. (2021). Effect of zinc oxide nanoparticles on mechanical properties of silica fume-based cement composites. Materials Today: Proceedings, 43, 778–783. https://doi.org/10.1016/j.matpr.2020.06.168
  • Godavarti, U., Mote, V. D., & Madhavaprasad, D. (2017). Role of cobalt doping on the electrical conductivity of ZnO nanoparticles. Journal of Asian Ceramic Societies, 5(4), 391–396. https://doi.org/10.1016/j.jascer.2017.08.002
  • Gopalakrishnan, R., & Nithiyanantham, S. (2020). Effect of ZnO Nanoparticles on cement mortar for enhancing the physico-chemical, mechanical and related properties. Advanced Science, Engineering and Medicine, 12(3), 348–355. https://doi.org/10.1166/asem.2020.2505
  • Han, M. C., & Han, C. G. (2010). Use of maturity methods to estimate the setting time of concrete containing super retarding agents. Cement and Concrete Composites, 32(2), 164–172. https://doi.org/10.1016/j.cemconcomp.2009.11.008
  • Hocaoğlu, I. (2021). Self-heating mortars with using graphene oxide and increasing CSH gel formation with the direct current application. Revista de la Construcción Journal of Construction, 20(3), 559–575. https://doi.org/10.7764/rdlc.20.3.559
  • Hocaoglu, İ. (2022). Investigation of the effect of current in zeolite-graphene oxide additives of mortar and development of a novel method for determining the setting time. Journal of Building Engineering, 46, 103803. https://doi.org/10.1016/j.jobe.2021.103803
  • Hu, C. (2014). Microstructure and mechanical properties of fly ash blended cement pastes. Construction and Building Materials, 73, 618–625. https://doi.org/10.1016/j.conbuildmat.2014.10.009
  • Jaya, R. P., Hainin, M. R., Wan Ibrahim, M. H., Nazri, F. M., Arshad, M. F., & Muthusamy, K. (2018). Physical and chemical properties of rice husk ash concrete under seawater. International Journal of Integrated Engineering, 10(4), 165–168. https://doi.org/10.30880/ijie.2018.10.04.026
  • Jing, G. J., Ye, Z. M., Li, C., Cui, J., Wang, S. X., & Cheng, X. (2019). A ball milling strategy to disperse graphene oxide in cement composites. Xinxing Tan Cailiao/New Carbon Materials, 34(6), 569–577. https://doi.org/10.1016/S1872-5805(19)60032-6
  • Kafi, M. A., Sadeghi-Nik, A., Bahari, A., Sadeghi-Nik, A., & Mirshafiei, E. (2016). Microstructural characterization and mechanical properties of cementitious mortar containing montmorillonite nanoparticles, Journal of Materials in Civil Engineering, 28(12). https://doi.org/10.1061/(ASCE)MT.1943-5533.0001671
  • Kantharia, M., Mishra, P., & Trivedi, M. K. (2019). Strength of cement mortar using nano oxides: An experimental study. International Journal of Engineering and Advanced Technology, 8(3), 294–299.
  • Kawashima, S., Hou, P., Corr, D. J., & Shah, S. P. (2013). Modification of cement-based materials with nanoparticles. Cement and Concrete Composites, 36(1), 8–15. https://doi.org/10.1016/j.cemconcomp.2012.06.012
  • Klapiszewska, I., Kubiak, A., Parus, A., Janczarek, M., & Ślosarczyk, A. (2022). The in situ hydrothermal and microwave syntheses of zinc oxides for functional cement composites. Materials, 15(3), 1069. https://doi.org/10.3390/ma15031069
  • Korucu, H., Şimşek, B., Uygunoğlu, T., Güvenç, A. B., & Yartaşı, A. (2019). Statistical approach to carbon based materials reinforced cementitious composites: Mechanical, thermal, electrical and sulfuric acid resistance properties. Composites Part B: Engineering, 171, 347–360. https://doi.org/10.1016/j.compositesb.2019.05.017
  • Kumar Mishra, P., & Kantharia, M. (2021). Tensile strength investigation of cement mortar using Nano zinc oxide (ZnO). Materials Today: Proceedings, 47, 7178–7180. https://doi.org/10.1016/j.matpr.2021.06.402
  • Kumar, M., Bansal, M., & Garg, R. (2021). An overview of beneficiary aspects of zinc oxide nanoparticles on performance of cement composites. Materials Today: Proceedings, 43, 892–898. https://doi.org/10.1016/j.matpr.2020.07.215
  • Lachemi, M., Hossain, K. M. A., Anagnostopoulos, C., & Sabouni, A. R. (2007). Application of maturity method to slipforming operations: Performance validation. Cement and Concrete Composites, 29(4), 290–299. https://doi.org/10.1016/j.cemconcomp.2006.12.001
  • Liu, J., Jin, H., Gu, C., & Yang, Y. (2019). Effects of zinc oxide nanoparticles on early-age hydration and the mechanical properties of cement paste. Construction and Building Materials, 217, 352–362. https://doi.org/10.1016/j.conbuildmat.2019.05.027
  • Liu, J., Li, Q., & Xu, S. (2015). Influence of nanoparticles on fluidity and mechanical properties of cement mortar. Construction and Building Materials, 101, 892–901. https://doi.org/10.1016/j.conbuildmat.2015.10.149
  • Mazari, M., Aval, S. F., & Rodriguez-Nikl, T. (2020). Evaluating the use of recycled and sustainable materials in self-consolidating concrete for underground ınfrastructure applications. University Transportation Center for Underground Transportation Infrastructure. California State University. https://rosap.ntl.bts.gov/view/dot/59164
  • Mousavi, M. A., Sadeghi-Nik, A., Bahari, A., Ashour, A., & Khayat, K. H. (2022). Cement paste modified by nano-montmorillonite and carbon nanotubes. ACI Materials Journal, 119(3), 173–185.
  • Mousavi, M. A., Sadeghi-Nik, A., Bahari, A., Jin, C., Ahmed, R., Ozbakkaloglu, T., & Brito, J. (2021). Strength optimization of cementitious composites reinforced by carbon nanotubes and Titania nanoparticles. Construction and Building Materials, 303, 124510. https://doi.org/10.1016/j.conbuildmat.2021.124510
  • Nanoparticles https://https://nanografi.com/popular-products/, 15 September 2022.
  • Nazari, A., & Riahi, S. (2021). Retraction notice to “The effects of zinc dioxide nanoparticles on flexural strength of self compacting concrete” (Composites Part B (2011) 42(2) 167–175). Composites Part B: Engineering, 219, 108988. https://doi.org/10.1016/j.compositesb.2021.108988
  • Nidheesh, P. V., & Kumar, M. S. (2019). An overview of environmental sustainability in cement and steel production. Journal of Cleaner Production, 231, 856–871. https://doi.org/10.1016/j.jclepro.2019.05.251
  • Nik, A. S., & Bahari, A. (2011). Nano-particles in concrete and cement mixtures. Applied Mechanics and Materials, 110–116, 3853–3855. https://doi.org/10.4028/www.scientific.net/amm.110-116.3853
  • Nivethitha, N., & Dharmar, S. (2016). Influence of zinc oxide nanoparticle on strength and durability of cement mortar. International Journal of Earth Sciences and Engineering, 9(3), 175–181.
  • Nochaiya, T., Sekine, Y., Choopun, S., & Chaipanich, A. (2015). Microstructure, characterizations, functionality and compressive strength of cement-based materials using zinc oxide nanoparticles as an additive. Journal of Alloys and Compounds, 630, 1–10. https://doi.org/10.1016/j.jallcom.2014.11.043
  • Onodera, A., Yoshio, K., Satoh, H., Takama, T., Fujita, M., & Yamashita, H. (1999). Li-Induced ferroelectricity and its structural phase transition in ZnO. Ferroelectrics, 230(1), 163–168. https://doi.org/10.1080/00150199908214913
  • Onyelowe, K. C., Kontoni, D. N., Ebid, A. M., Dabbaghi, F., Soleymani, A., Jahangir, H., & Nehdi, M. L. (2022). Multi-objective optimization of sustainable concrete containing fly ash based on environmental and mechanical considerations. Buildings, 12(7), 948. https://doi.org/10.3390/buildings12070948
  • Pangdaeng, S., Phoo-Ngernkham, T., Sata, V., & Chindaprasirt, P. (2014). Influence of curing conditions on properties of high calcium fly ash geopolymer containing Portland cement as additive. Materials & Design, 53, 269–274. https://doi.org/10.1016/j.matdes.2013.07.018
  • Pinto, R. C. A., & Hover, K. C. (1999). Application of maturity approach to setting times. ACI Materials Journal, 96(6), 686–691. https://doi.org/10.14359/795
  • Scrivener, K. L., John, V. M., & Gartner, E. M. (2018). Eco-efficient cements: Potential economically viable solutions for a low-CO2 cement-based materials industry. Cement and Concrete Research, 114, 2–26. https://doi.org/10.1016/j.cemconres.2018.03.015
  • Seifan, M., Mendoza, S., & Berenjian, A. (2022). Effect of nano and micro iron oxide particles on the workability, strength and absorption rate of cement mortar containing fly ash. European Journal of Environmental and Civil Engineering, 26(9), 3898–3912. https://doi.org/10.1080/19648189.2020.1824822
  • Shafaei, D., Yang, S., Berlouis, L., & Minto, J. (2020). Multiscale pore structure analysis of nano titanium dioxide cement mortar composite. Materials Today Communications, 22, 100779. https://doi.org/10.1016/j.mtcomm.2019.100779
  • Singh, N. B., & Middendorf, B. (2020). Geopolymers as an alternative to Portland cement: An overview. Construction and Building Materials, 237, 117455–117415. https://doi.org/10.1016/j.conbuildmat.2019.117455
  • Taylor, P., Kosmatka, S., & Voigt, G. (2007a). Integrated materials and construction practices for concrete pavement. A state-of-the-practice manual. Center for Transportation Research and Education Iowa State University, p. 91. https://intrans.iastate.edu/app/uploads/2019/05/IMCP_manual.pdf
  • Taylor, P., Kosmatka, S., & Voigt, G. (2007b). Integrated materials and construction practices for concrete pavement. A state-of-the-practice manual. Center for Transportation Research and Education Iowa State University, pp. 69–104. https://intrans.iastate.edu/app/uploads/2019/05/IMCP_manual.pdf
  • TS EN 12390-7. (2010). Concrete-hardened concrete tests - Part 7: Determination of hardened concrete density. Turkish Standards Institute.
  • TS EN 197-1. (2020). Cement. Turkish Standardization Institute.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.