269
Views
1
CrossRef citations to date
0
Altmetric
Original Articles

Effect of glass powder on the rheological and mechanical properties of slag-based mechanochemical activation geopolymer grout

ORCID Icon, ORCID Icon & ORCID Icon
Pages 3628-3652 | Received 18 May 2022, Accepted 29 Oct 2022, Published online: 08 Dec 2022

References

  • Abbas, I. S., Abed, M. H., & Canakci, H. (2023). Development and characterization of eco-and user-friendly grout production via mechanochemical activation of geopolymer. Journal of Building Engineering, 63, 105336. https://doi.org/10.1016/j.jobe.2022.105336
  • Abdullah, A., Hussin, K., Abdullah, M. M. A. B., Yahya, Z., Sochacki, W., Razak, R. A., Błoch, K., & Fansuri, H. (2021). The effects of various concentrations of NaOH on the inter-particle gelation of a fly ash geopolymer aggregate. Materials (Basel), 14(5), 1111. https://doi.org/10.3390/ma14051111
  • Adesanya, E., Ohenoja, K., Yliniemi, J., & Illikainen, M. (2020). Mechanical transformation of phyllite mineralogy toward its use as alkali-activated binder precursor. Minerals Engineering, 145, 106093. https://doi.org/10.1016/j.mineng.2019.106093
  • American Society for Testing & Materials. (1987). Standard test methods for felt, 1–8. https://doi.org/10.1520/C0191-19.2
  • Anon, O. H. (1979). Classification of rocks and soils for engineering geological mapping. Part 1: rock and soil materials. Bulletin of the International Association of Engineering Geology, 19, 355–371.
  • ASTM, C. (2009). Standard test method for pulse velocity through concrete. ASTM Int.
  • ASTM:C940-10a. (2010). Standard Test Method for Expansion and Bleeding of Freshly Mixed Grouts for Preplaced-Aggregate Concrete in the Laboratory. ASTM International, i, 1–3. https://doi.org/10.1520/C0940-16.2
  • ASTM:D2938–95. (1995). Standard test method for unconfined compressive strength of intact rock core specimens. ASTM International, West Conshohocken, PA, USA.
  • Athira, V. S., Bahurudeen, A., Saljas, M., & Jayachandran, K. (2021). Influence of different curing methods on mechanical and durability properties of alkali activated binders. Construction and Building Materials, 299, 123963. https://doi.org/10.1016/j.conbuildmat.2021.123963
  • Baalamurugan, J., Ganesh Kumar, V., Stalin Dhas, T., Taran, S., Nalini, S., Karthick, V., Ravi, M., & Govindaraju, K. (2021). Utilization of induction furnace steel slag based iron oxide nanocomposites for antibacterial studies. SN Applied Sciences, 3(3), 1–8. https://doi.org/10.1007/s42452-021-04299-9
  • Baláž, P., Achimovičová, M., Baláž, M., Billik, P., Cherkezova-Zheleva, Z., Criado, J. M., Delogu, F., Dutková, E., Gaffet, E., Gotor, F. J., Kumar, R., Mitov, I., Rojac, T., Senna, M., Streletskii, A., & Wieczorek-Ciurowa, K. (2013). Hallmarks of mechanochemistry: from nanoparticles to technology. Chemical Society Reviews, 42(18), 7571–7637. https://doi.org/10.1039/c3cs35468g
  • Bilondi, M. P., Toufigh, M. M., & Toufigh, V. (2018). Experimental investigation of using a recycled glass powder-based geopolymer to improve the mechanical behavior of clay soils. Construction and Building Materials, 170, 302–313. https://doi.org/10.1016/j.conbuildmat.2018.03.049
  • Duxson, P., & Provis, J. L. (2008). Designing precursors for geopolymer cements. Journal of the American Ceramic Society, 91(12), 3864–3869. https://doi.org/10.1111/j.1551-2916.2008.02787.x
  • Favier, A., Hot, J., Habert, G., Roussel, N., & d‘Espinose de Lacaillerie, J.-B. (2014). Flow properties of MK-based geopolymer pastes. A comparative study with standard Portland cement pastes. Soft Matter, 10(8), 1134–1141. https://doi.org/10.1039/c3sm51889b
  • Fernández-Jiménez, A., Cristelo, N., Miranda, T., & Palomo, Á. (2017). Sustainable alkali activated materials: Precursor and activator derived from industrial wastes. The Journal of Cleaner Production, 162, 1200–1209. https://doi.org/10.1016/j.jclepro.2017.06.151
  • Fernández-Jiménez, A., Garcia-Lodeiro, I., Maltseva, O., & Palomo, A. (2019). Mechanical-chemical activation of coal fly ashes: An effective way for recycling and make cementitious materials. Frontiers in Materials, 6, 51. https://doi.org/10.3389/fmats.2019.00051
  • Feys, D., Wallevik, J. E., Yahia, A., Khayat, K. H., & Wallevik, O. H. (2013). Extension of the Reiner–Riwlin equation to determine modified Bingham parameters measured in coaxial cylinders rheometers. Materials and Structures, 46(1–2), 289–311. https://doi.org/10.1617/s11527-012-9902-6
  • Fluids, C. (2003). Standard test method for viscosity of chemical grouts by brookfield viscometer. Annual Book of ASTM Standards, 04, 8–10. https://doi.org/10.1520/D4016-08.2
  • Güllü, H. (2016). Comparison of rheological models for jet grout cement mixtures with various stabilizers. Construction and Building Materials, 127, 220–236. https://doi.org/10.1016/j.conbuildmat.2016.09.129
  • Güllü, H., & Agha, A. A. (2021). The rheological, fresh and strength effects of cold-bonded geopolymer made with metakaolin and slag for grouting. Construction and Building Materials, 274, 122091. https://doi.org/10.1016/j.conbuildmat.2020.122091
  • Güllü, H., Al Nuaimi, M. M. D., & Aytek, A. (2021). Rheological and strength performances of cold-bonded geopolymer made from limestone dust and bottom ash for grouting and deep mixing. Bulletin of Engineering Geology and the Environment, 80(2), 1103–1123. https://doi.org/10.1007/s10064-020-01998-2
  • Gupta, R., Bhardwaj, P., Mishra, D., Mudgal, M., Chouhan, R. K., Prasad, M., & Amritphale, S. S. (2017). Evolution of advanced geopolymeric cementitious material via a novel process. Advances in Cement Research, 29(3), 125–134. https://doi.org/10.1680/jadcr.16.00113
  • Güllü, H., Cevik, A., Al-Ezzi, K., M. A., & Gülsan, M. E. (2019). On the rheology of using geopolymer for grouting: A comparative study with cement-based grout included fly ash and cold bonded fly ash. Construction and Building Materials, 196, 594–610. https://doi.org/10.1016/j.conbuildmat.2018.11.140
  • Mukhtar, H. A., Abbas, I. S., & Canakci, H. (2022a). Influence of mechanochemical activation on the rheological, fresh, and mechanical properties of one-part geopolymer grout. Advances in Cement Research, 1–15. https://doi.org/10.1680/jadcr.21.00205
  • Mukhtar, H. A., Sabbar Abbas, I., Hamed, M., & Canakci, H. (2022b). Rheological, fresh, and mechanical properties of mechanochemically activated geopolymer grout: A comparative study with conventionally activated geopolymer grout. Construction and Building Materials, 322, 126338. https://doi.org/10.1016/j.conbuildmat.2022.126338
  • Hosseini, S., Brake, N. A., Nikookar, M., Günaydın-Şen, Ö., & Snyder, H. A. (2021). Mechanochemically activated bottom ash-fly ash geopolymer. Cement and Concrete Composites, 118, 103976. https://doi.org/10.1016/j.cemconcomp.2021.103976
  • Humur, G., & Çevik, A. (2022). Effects of hybrid fibers and nanosilica on mechanical and durability properties of lightweight engineered geopolymer composites subjected to cyclic loading and heating–cooling cycles. Construction and Building Materials, 326, 126846. https://doi.org/10.1016/j.conbuildmat.2022.126846
  • Humur, G., & Çevik, A. (2022). Mechanical characterization of lightweight engineered geopolymer composites exposed to elevated temperatures. Ceramics International, 48(10), 13634–13650. https://doi.org/10.1016/j.ceramint.2022.01.243
  • Intini, G., Liberti, L., Notarnicola, M., & Canio, F. D. (2009). Mechanochemical activation of coal fly ash for production of high strength cement conglomerates. Химия в Интересах Устойчивого Развития, 17, 567–571.
  • Jiang, X., Xiao, R., Ma, Y., Zhang, M., Bai, Y., & Huang, B. (2020). Influence of waste glass powder on the physico-mechanical properties and microstructures of fly ash-based geopolymer paste after exposure to high temperatures. Construction and Building Materials, 262, 120579. https://doi.org/10.1016/j.conbuildmat.2020.120579
  • Juenger, M. C. G., Winnefeld, F., Provis, J. L., & Ideker, J. H. (2011). Advances in alternative cementitious binders. Cement and Concrete Research, 41(12), 1232–1243. https://doi.org/10.1016/j.cemconres.2010.11.012
  • Karim, M. R., Zain, M. F. M., Jamil, M., & Lai, F. C. (2013). Fabrication of a non-cement binder using slag, palm oil fuel ash and rice husk ash with sodium hydroxide. Construction and Building Materials, 49, 894–902. https://doi.org/10.1016/j.conbuildmat.2013.08.077
  • Kashani, A., Provis, J. L., Qiao, G. G., & Van Deventer, J. S. J. (2014). The interrelationship between surface chemistry and rheology in alkali activated slag paste. Construction and Building Materials, 65, 583–591. https://doi.org/10.1016/j.conbuildmat.2014.04.127
  • Khan, M. N. N., Kuri, J. C., & Sarker, P. K. (2021). Effect of waste glass powder as a partial precursor in ambient cured alkali activated fly ash and fly ash-GGBFS mortars. Journal of Building Engineering, 34, 101934. https://doi.org/10.1016/j.jobe.2020.101934
  • Konijn, B. J., Sanderink, O. B. J., & Kruyt, N. P. (2014). Experimental study of the viscosity of suspensions: Effect of solid fraction, particle size and suspending liquid. Powder Technology, 266, 61–69. https://doi.org/10.1016/j.powtec.2014.05.044
  • Kumar, S., & Kumar, R. (2011). Mechanical activation of fly ash: Effect on reaction, structure and properties of resulting geopolymer. Ceramics International, 37(2), 533–541. https://doi.org/10.1016/j.ceramint.2010.09.038
  • Kumar, S., Kumar, R., & Mehrotra, S. P. (2010). Influence of granulated blast furnace slag on the reaction, structure and properties of fly ash based geopolymer. Journal of Materials Science, 45(3), 607–615. https://doi.org/10.1007/s10853-009-3934-5
  • Kumar, S., Mucsi, G., Kristály, F., & Pekker, P. (2017). Mechanical activation of fly ash and its influence on micro and nano-structural behaviour of resulting geopolymers. Advanced Powder Technology, 28(3), 805–813. https://doi.org/10.1016/j.apt.2016.11.027
  • Kushwah, S., Mudgal, M., & Chouhan, R. K. (2021). The process, characterization and mechanical properties of fly ash-based Solid form geopolymer via mechanical activation. South African Journal of Chemical Engineering, 38, 104–114. https://doi.org/10.1016/j.sajce.2021.09.002
  • Lee, N. K., & Lee, H. K. (2013). Setting and mechanical properties of alkali-activated fly ash/slag concrete manufactured at room temperature. Construction and Building Materials, 47, 1201–1209. https://doi.org/10.1016/j.conbuildmat.2013.05.107
  • Lee, W. K. W., & Van Deventer, J. S. J. (2002). Structural reorganisation of class F fly ash in alkaline silicate solutions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 211(1), 49–66. https://doi.org/10.1016/S0927-7757(02)00237-6
  • Lee, W. K. W., & Van Deventer, J. S. J. (2003). Use of infrared spectroscopy to study geopolymerization of heterogeneous amorphous aluminosilicates. Langmuir, 19(21), 8726–8734. https://doi.org/10.1021/la026127e
  • Li, H., Xu, D., Feng, S., & Shang, B. (2014). Microstructure and performance of fly ash micro-beads in cementitious material system. Construction and Building Materials, 52, 422–427. https://doi.org/10.1016/j.conbuildmat.2013.11.040
  • Li, L., Lu, J. X., Zhang, B., & Poon, C. S. (2020). Rheology behavior of one-part alkali activated slag/glass powder (AASG) pastes. Construction and Building Materials, 258, 120381. https://doi.org/10.1016/j.conbuildmat.2020.120381
  • Liang, G., Li, H., Zhu, H., Liu, T., Chen, Q., & Guo, H. (2021). Reuse of waste glass powder in alkali-activated metakaolin/fly ash pastes: Physical properties, reaction kinetics and microstructure. Resources, Conservation and Recycling,173, 105721. https://doi.org/10.1016/j.resconrec.2021.105721
  • Liang, G., Zhu, H., Zhang, Z., Wu, Q., & Du, J. (2019). Investigation of the waterproof property of alkali-activated metakaolin geopolymer added with rice husk ash. The Journal of Cleaner Production, 230, 603–612. https://doi.org/10.1016/j.jclepro.2019.05.111
  • Liu, Y., Shi, C., Zhang, Z., & Li, N. (2019). An overview on the reuse of waste glasses in alkali-activated materials. Resources, Conservation and Recycling, 144, 297–309. https://doi.org/10.1016/j.resconrec.2019.02.007
  • Lu, C., Zhang, Z., Shi, C., Li, N., Jiao, D., & Yuan, Q. (2021). Rheology of alkali-activated materials: A review. Cement and Concrete Composites, 121, 104061. https://doi.org/10.1016/j.cemconcomp.2021.104061
  • Marjanovi, N., Komljenovi, M., Ba, Z., Nikoli, V., & Petrovi, R. (2014). Physical—mechanical and microstructural properties of alkali-activated fly ash—Blast furnace slag blends. https://doi.org/10.1016/j.ceramint.2014.09.075
  • Marjanović, N., Komljenović, M., Baščarević, Z., & Nikolić, V. (2014). Improving reactivity of fly ash and properties of ensuing geopolymers through mechanical activation. Construction and Building Materials, 57, 151–162. https://doi.org/10.1016/j.conbuildmat.2014.01.095
  • Masi, G., Filipponi, A., & Bignozzi, M. C. (2021). Fly ash-based one-part alkali activated mortars cured at room temperature: effect of precursor pre-treatments. Open Ceram, 8, 100178. https://doi.org/10.1016/j.oceram.2021.100178
  • Matalkah, F., Xu, L., Wu, W., & Soroushian, P. (2017). Mechanochemical synthesis of one-part alkali aluminosilicate hydraulic cement. Materials and Structures, 50(1), 1–12. https://doi.org/10.1617/s11527-016-0968-4
  • Muraleedharan, M., & Nadir, Y. (2021). Factors affecting the mechanical properties and microstructure of geopolymers from red mud and granite waste powder: A review. Ceramics International, 47(10), 13257–13279. https://doi.org/10.1016/j.ceramint.2021.02.009
  • Nedunuri, A., & Muhammad, S. (2020). Influential parameters in rheology of alkali-activated binders. ACI Materials Journal, 117, 75–85. https://doi.org/10.14359/51724593
  • Novais, R. M., Ascensão, G., Seabra, M. P., & Labrincha, J. A. (2016). Waste glass from end-of-life fluorescent lamps as raw material in geopolymers. Waste Management (New York, N.Y.), 52, 245–255. https://doi.org/10.1016/j.wasman.2016.04.003
  • Pacheco-Torgal, F., Moura, D., Ding, Y., & Jalali, S. (2011). Composition, strength and workability of alkali-activated metakaolin based mortars. Construction and Building Materials, 25(9), 3732–3745. https://doi.org/10.1016/j.conbuildmat.2011.04.017
  • Palacios, M., Alonso, M. M., Varga, C., & Puertas, F. (2019). Influence of the alkaline solution and temperature on the rheology and reactivity of alkali-activated fly ash pastes. Cement and Concrete Composites, 95, 277–284. https://doi.org/10.1016/j.cemconcomp.2018.08.010
  • Palacios, M., Banfill, P. F. G., & Puertas, F. (2008). Rheology and setting of alkali-activated slag pastes and mortars: Effect of organic admixture. ACI Materials Journal, 105, 140.
  • Park, C. K., Noh, M. H., & Park, T. H. (2005). Rheological properties of cementitious materials containing mineral admixtures. Cement and Concrete Research, 35(5), 842–849. https://doi.org/10.1016/j.cemconres.2004.11.002
  • Pascual, A. B., Tognonvi, T. M., & Tagnit-Hamou, A. (2021). Optimization study of waste glass powder-based alkali activated materials incorporating metakaolin: Activation and curing conditions. The Journal of Cleaner Production, 308, 127435. https://doi.org/10.1016/j.jclepro.2021.127435
  • Provis, J. L. (2009). Activating solution chemistry for geopolymers. Geopolymers, 50–71. https://doi.org/10.1533/9781845696382.1.50
  • Rifaai, Y., Yahia, A., Mostafa, A., Aggoun, S., & Kadri, E. H. (2019). Rheology of fly ash-based geopolymer: Effect of NaOH concentration. Construction and Building Materials. 223, 583–594. https://doi.org/10.1016/j.conbuildmat.2019.07.028
  • Şahmaran, M. (2008). The effect of replacement rate and fineness of natural zeolite on the rheological properties of cement-based grouts. Canadian Journal of Civil Engineering, 35(8), 796–806. https://doi.org/10.1139/L08-039
  • Samarakoon, M. H., Ranjith, P. G., & De Silva, V. R. S. (2020). Effect of soda-lime glass powder on alkali-activated binders: Rheology, strength and microstructure characterization. Construction and Building Materials, 241, 118013. https://doi.org/10.1016/j.conbuildmat.2020.118013
  • Shang, J., Dai, J., Zhao, T., Guo, S., Zhang, P., & Mu, B. (2018). Alternation of traditional cement mortars using fly ash-based geopolymer mortars modified by slag. The Journal of Cleaner Production, 203, 746–756. https://doi.org/10.1016/j.jclepro.2018.08.255
  • Si, R., Guo, S., Dai, Q., & Wang, J. (2020). Atomic-structure, microstructure and mechanical properties of glass powder modified metakaolin-based geopolymer. Construction and Building Materials, 254, 119303. https://doi.org/10.1016/j.conbuildmat.2020.119303
  • Silva, P. D., Sagoe-Crenstil, K., & Sirivivatnanon, V. (2007). Kinetics of geopolymerization: Role of Al2O3 and SiO2. Cement and Concrete Research, 37(4), 512–518. https://doi.org/10.1016/j.cemconres.2007.01.003
  • Souri, A., Kazemi-Kamyab, H., Snellings, R., Naghizadeh, R., Golestani-Fard, F., & Scrivener, K. (2015). Pozzolanic activity of mechanochemically and thermally activated kaolins in cement. Cement and Concrete Research, 77, 47–59. https://doi.org/10.1016/j.cemconres.2015.04.017
  • Temuujin, J., Williams, R. P., & Van Riessen, A. (2009). Effect of mechanical activation of fly ash on the properties of geopolymer cured at ambient temperature. Journal of Materials Processing Technology, 209(12–13), 5276–5280. https://doi.org/10.1016/j.jmatprotec.2009.03.016
  • Terro, M. J. (2006). Properties of concrete made with recycled crushed glass at elevated temperatures. Building and Environment, 41(5), 633–639. https://doi.org/10.1016/j.buildenv.2005.02.018
  • Tho-In, T., Sata, V., Boonserm, K., & Chindaprasirt, P. (2018). Compressive strength and microstructure analysis of geopolymer paste using waste glass powder and fly ash. The Journal of Cleaner Production, 172, 2892–2898. https://doi.org/10.1016/j.jclepro.2017.11.125
  • Vafaei, M., & Allahverdi, A. (2017). High strength geopolymer binder based on waste-glass powder. Advanced Powder Technology, 28(1), 215–222. https://doi.org/10.1016/j.apt.2016.09.034
  • Vance, K., Dakhane, A., Sant, G., & Neithalath, N. (2014). Observations on the rheological response of alkali activated fly ash suspensions: The role of activator type and concentration. Rheologica Acta, 53(10–11), 843–855. https://doi.org/10.1007/s00397-014-0793-z
  • Vásquez, A., Cárdenas, V., Robayo, R. A., & de Gutiérrez, R. M. (2016). Geopolymer based on concrete demolition waste. Advanced Powder Technology, 27(4), 1173–1179. https://doi.org/10.1016/j.apt.2016.03.029
  • Widjaja, B., & Lee, S. H.-H. (2013). Flow box test for viscosity of soil in plastic and viscous liquid states. Soils Found, 53(1), 35–46. https://doi.org/10.1016/j.sandf.2012.12.002
  • Xiao, R., Ma, Y., Jiang, X., Zhang, M., Zhang, Y., Wang, Y., Huang, B., & He, Q. (2020). Strength, microstructure, efflorescence behavior and environmental impacts of waste glass geopolymers cured at ambient temperature. The Journal of Cleaner Production, 252, 119610. https://doi.org/10.1016/j.jclepro.2019.119610
  • Xiao, R., Polaczyk, P., Zhang, M., Jiang, X., Zhang, Y., Huang, B., & Hu, W. (2020). Evaluation of glass powder-based geopolymer stabilized road bases containing recycled waste glass aggregate. Transportation Research Record: Journal of the Transportation Research Board, 2674(1), 22–32. https://doi.org/10.1177/0361198119898695
  • Xiao, R., Zhang, Y., Jiang, X., Polaczyk, P., Ma, Y., & Huang, B. (2021). Alkali-activated slag supplemented with waste glass powder: Laboratory characterization, thermodynamic modelling and sustainability analysis. The Journal of Cleaner Production, 286, 125554. https://doi.org/10.1016/j.jclepro.2020.125554
  • Xie, H., Liu, F., Fan, Y., Yang, H., Chen, J., Zhang, J., & Zuo, C. (2013). Workability and proportion design of pumping concrete based on rheological parameters. Construction and Building Materials, 44, 267–275. https://doi.org/10.1016/j.conbuildmat.2013.02.051
  • Yahia, A., & Khayat, K. H. (2001). Analytical models for estimating yield stress of high-performance pseudoplastic grout. Cement and Concrete Research, 31(5), 731–738. https://doi.org/10.1016/S0008-8846(01)00476-8
  • Yahia, A., Mantellato, S., & Flatt, R. J. (2016). Concrete rheology: A basis for understanding chemical admixtures. Science and Technology of Concrete Admixtures ( pp. 97–127). Elsevier.
  • Yi, Y., Zheng, X., Liu, S., & Al-Tabbaa, A. (2015). Comparison of reactive magnesia-and carbide slag-activated ground granulated blastfurnace slag and Portland cement for stabilisation of a natural soil. Applied Clay Science, 111, 21–26. https://doi.org/10.1016/j.clay.2015.03.023
  • Yin, W., Li, X., Sun, T., Chen, Y., Xu, F., Yan, G., Xu, M., & Tian, K. (2021). Utilization of waste glass powder as partial replacement of cement for the cementitious grouts with superplasticizer and viscosity modifying agent binary mixtures: Rheological and mechanical performances. Construction and Building Materials, 286, 122953. https://doi.org/10.1016/j.conbuildmat.2021.122953
  • Zhang, D. W., Min Wang, D., Liu, Z., & Zhu Xie, F. (2018). Rheology, agglomerate structure, and particle shape of fresh geopolymer pastes with different NaOH activators content. Construction and Building Materials, 187, 674–680. https://doi.org/10.1016/j.conbuildmat.2018.07.205
  • Zhang, J., Li, S., Li, Z., Zhang, Q., Li, H., Du, J., & Qi, Y. (2019). Properties of fresh and hardened geopolymer-based grouts. Ceramics—Silikaty, 63, 164–173. https://doi.org/10.13168/cs.2019.0008
  • Zhang, S., Keulen, A., Arbi, K., & Ye, G. (2017). Waste glass as partial mineral precursor in alkali-activated slag/fly ash system. Cement and Concrete Research, 102, 29–40. https://doi.org/10.1016/j.cemconres.2017.08.012
  • Zhang, Y., Luo, X., Kong, X., Wang, F., & Gao, L. (2018). Rheological properties and microstructure of fresh cement pastes with varied dispersion media and superplasticizers. Powder Technology, 330, 219–227. https://doi.org/10.1016/j.powtec.2018.02.014
  • Zhang, Y., Xiao, R., Jiang, X., Li, W., Zhu, X., & Huang, B. (2020). Effect of particle size and curing temperature on mechanical and microstructural properties of waste glass-slag-based and waste glass-fly ash-based geopolymers. The Journal of Cleaner Production, 273, 122970. https://doi.org/10.1016/j.jclepro.2020.122970
  • Zhang, Z., Wang, H., & Provis, J. L. (2012). Quantitative study of the reactivity of fly ash in geopolymerization by FTIR. Journal of Sustainable Cement-Based Materials, 1(4), 154–166. https://doi.org/10.1080/21650373.2012.752620
  • Zhu, H., Liang, G., Li, H., Wu, Q., Zhang, C., Yin, Z., & Hua, S. (2021). Insights to the sulfate resistance and microstructures of alkali-activated metakaolin/slag pastes. Applied Clay Science, 202, 105968. https://doi.org/10.1016/j.clay.2020.105968
  • Zhu, H., Liang, G., Xu, J., Wu, Q., & Zhai, M. (2019). Influence of rice husk ash on the waterproof properties of ultrafine fly ash based geopolymer. Construction and Building Materials, 208, 394–401. https://doi.org/10.1016/j.conbuildmat.2019.03.035
  • Zingg, A., Winnefeld, F., Holzer, L., Pakusch, J., Becker, S., & Gauckler, L. (2008). Adsorption of polyelectrolytes and its influence on the rheology, zeta potential, and microstructure of various cement and hydrate phases. Journal of Colloid and Interface Science, 323(2), 301–312. https://doi.org/10.1016/j.jcis.2008.04.052

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.