215
Views
0
CrossRef citations to date
0
Altmetric
Original Articles

Micromechanical behavior of jointed rock masses under uniaxial compression loading: a numerical study based on the discrete element method

ORCID Icon, , ORCID Icon, ORCID Icon &
Pages 3653-3678 | Received 22 Jun 2022, Accepted 06 Nov 2022, Published online: 28 Nov 2022

References

  • Alneasan, M., & Behnia, M. (2021). Strain rate effects on the crack propagation speed under different loading modes (I, II and I/II): Experimental investigations. Engineering Fracture Mechanics, 258, 108118. https://doi.org/10.1016/j.engfracmech.2021.108118
  • Azéma, E., Radjai, F., & Dubois, F. (2013). Packings of irregular polyhedral particles: Strength, structure, and effects of angularity. Physical Review. E, Statistical, Nonlinear, and Soft Matter Physics, 87(6), 062203. https://doi.org/10.1103/PhysRevE.87.062203
  • Bahaaddini, M., Hagan, P., Mitra, R., & Hebblewhite, B. K. (2016). Numerical study of the mechanical behavior of nonpersistent jointed rock masses. International Journal of Geomechanics, 16(1), 04015035. https://doi.org/10.1061/(asce)gm.1943-5622.0000510
  • Bahaaddini, M., Sharrock, G., & Hebblewhite, B. K. (2013). Numerical investigation of the effect of joint geometrical parameters on the mechanical properties of a non-persistent jointed rock mass under uniaxial compression. Computers and Geotechnics, 49, 206–225. https://doi.org/10.1016/j.compgeo.2012.10.012
  • Bathurst, R. J., & Rothenburg, L. (1990). Observations on stress-force-fabric relationships in idealized granular materials. Mechanics of Materials, 9(1), 65–80. https://doi.org/10.1016/0167-6636(90)90030-J
  • Bieniawski, Z. T. (1967). Mechanism of brittle fracture of rock: Part I—theory of the fracture process. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 4(4), 395–406. https://doi.org/10.1016/0148-9062(67)90030-7
  • Bobet, A. (2000). The initiation of secondary cracks in compression. Engineering Fracture Mechanics, 66(2), 187–219. https://doi.org/10.1016/S0013-7944(00)00009-6
  • Brace, W., & Bombolakis, E. (1963). A note on brittle crack growth in compression. Journal of Geophysical Research, 68(12), 3709–3713. https://doi.org/10.1029/JZ068i012p03709
  • Cai, W., Li, Y., Gao, K., & Wang, K. (2022). Crack propagation mechanism in rock-like specimens containing intermittent flaws under shear loading. Theoretical and Applied Fracture Mechanics, 117, 103187. https://doi.org/10.1016/j.tafmec.2021.103187
  • Chang, L., Konietzky, H., & Frühwirt, T. (2019). Strength anisotropy of rock with crossing joints: Results of physical and numerical modeling with gypsum models. Rock Mechanics and Rock Engineering, 52(7), 2293–2317. https://doi.org/10.1007/s00603-018-1714-8
  • Chen, X., Zhang, S., & Cheng, C. (2018). Numerical study on effect of joint strength mobilization on behavior of rock masses with large nonpersistent joints under uniaxial compression. International Journal of Geomechanics, 18(11), 04018140. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001260
  • Cheung, L. Y. G., O’Sullivan, C., & Coop, M. R. (2013). Discrete element method simulations of analogue reservoir sandstones. International Journal of Rock Mechanics and Mining Sciences, 63, 93–103. https://doi.org/10.1016/j.ijrmms.2013.07.002
  • Fan, X., Kulatilake, P., & Chen, X. (2015). Mechanical behavior of rock-like jointed blocks with multi-non-persistent joints under uniaxial loading: A particle mechanics approach. Engineering Geology, 190, 17–32. https://doi.org/10.1016/j.enggeo.2015.02.008
  • Gao, G., Meguid, M. A., Chouinard, L. E., & Xu, C. (2020a). Insights into the transport and fragmentation characteristics of earthquake-induced rock avalanche: Numerical study. International Journal of Geomechanics, 20(9), 04020157. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001800
  • Gao, G., Meguid, M. A., & Chouinard, L. E. (2020b). On the role of pre-existing discontinuities on the micromechanical behavior of confined rock samples: A numerical study. Acta Geotechnica, 15(12), 3483–3510. https://doi.org/10.1007/s11440-020-01037-0
  • Gu, M., Cui, J., Yuan, J., Wu, Y., Li, Y., & Mo, H. (2022). The stress and deformation of stone column-improved soft clay by discrete element modelling. European Journal of Environmental and Civil Engineering, 26(4), 1544–1560. https://doi.org/10.1080/19648189.2020.1715851
  • Guo, N., & Zhao, J. (2013). The signature of shear-induced anisotropy in granular media. Computers and Geotechnics, 47, 1–15. https://doi.org/10.1016/j.compgeo.2012.07.002
  • Han, W., Jiang, Y., Luan, H., Liu, J., Wu, X., & Du, Y. (2020). Fracture evolution and failure mechanism of rock-like materials containing cross-flaws under the shearing effect. Theoretical and Applied Fracture Mechanics, 110, 102815. https://doi.org/10.1016/j.tafmec.2020.102815
  • Hatzor, Y. H., & Palchik, V. (1997). The influence of grain size and porosity on crack initiation stress and critical flaw length in dolomites. International Journal of Rock Mechanics and Mining Sciences, 34(5), 805–816. https://doi.org/10.1016/S1365-1609(96)00066-6
  • Huang, F., Shen, J., Cai, M., & Xu, C. (2019). An empirical UCS model for anisotropic blocky rock masses. Rock Mechanics and Rock Engineering, 52(9), 3119–3131. https://doi.org/10.1007/s00603-019-01771-2
  • Itasca Consulting Group. (2014). Particle Flow Code in Three Dimensions (PFC2D 5.0). Itasca, Minneapolis.
  • Ivars, D. M., Pierce, M. E., Darcel, C., Reyes-Montes, J., Potyondy, D. O., Young, R. P., & Cundall, P. A. (2011). The synthetic rock mass approach for jointed rock mass modelling. International Journal of Rock Mechanics and Mining Sciences, 48(2), 219–244. https://doi.org/10.1016/j.ijrmms.2010.11.014
  • Ken-Ichi, K. (1984). Distribution of directional data and fabric tensors. International Journal of Engineering Science, 22(2), 149–164. https://doi.org/10.1016/0020-7225(84)90090-9
  • Kulatilake, P., He, W., Um, J., & Wang, H. (1997). A physical model study of jointed rock mass strength under uniaxial compressive loading. International Journal of Rock Mechanics and Mining Sciences, 34(3–4), 165.e1–15. https://doi.org/10.1016/S1365-1609(97)00123-8
  • Kulatilake, P., Liang, J., & Gao, H. (2001). Experimental and numerical simulations of jointed rock block strength under uniaxial loading. Journal of Engineering Mechanics, 127(12), 1240–1247. https://doi.org/10.1061/(ASCE)0733-9399(2001)127:12(1240)
  • Lajtai, E. (1974). Brittle fracture in compression. International Journal of Fracture, 10(4), 525–536. https://doi.org/10.1007/BF00155255
  • Lee, H., & Jeon, S. (2011). An experimental and numerical study of fracture coalescence in pre-cracked specimens under uniaxial compression. International Journal of Solids and Structures, 48(6), 979–999. https://doi.org/10.1016/j.ijsolstr.2010.12.001
  • Liapopoulou, M., Bravo‐Haro, M. A., & Elghazouli, A. Y. (2020). The role of ground motion duration and pulse effects in the collapse of ductile systems. Earthquake Engineering & Structural Dynamics, 49(11), 1051–1071. https://doi.org/10.1002/eqe.3278
  • Liu, S., Liu, H., Liu, H., Xia, Z., Zhao, Y., & Zhai, J. (2022). Numerical simulation of mesomechanical properties of limestone containing dissolved hole and persistent joint. Theoretical and Applied Fracture Mechanics, 122, 103572. https://doi.org/10.1016/j.tafmec.2022.103572
  • Ma, G., Zhou, W., Ng, T.-T., Cheng, Y.-G., & Chang, X.-L. (2015). Microscopic modeling of the creep behavior of rockfills with a delayed particle breakage model. Acta Geotechnica, 10(4), 481–496. https://doi.org/10.1007/s11440-015-0367-y
  • Oda, M. (1982). Fabric tensor for discontinuous geological materials. Soils and Foundations, 22(4), 96–108. https://doi.org/10.3208/sandf1972.22.4_96
  • Ouadfel, H., & Rothenburg, L. (2001). Stress–force–fabric’ relationship for assemblies of ellipsoids. Mechanics of Materials, 33(4), 201–221. https://doi.org/10.1016/S0167-6636(00)00057-0
  • Petit, J. P., & Barquins, M. (1988). Can natural faults propagate under mode II conditions? Tectonics, 7(6), 1243–1256. https://doi.org/10.1029/TC007i006p01243
  • Potyondy, D. O., & Cundall, P. (2004). A bonded-particle model for rock. International Journal of Rock Mechanics and Mining Sciences, 41(8), 1329–1364. https://doi.org/10.1016/j.ijrmms.2004.09.011
  • Rothenburg, L., & Bathurst, R. (1989). Analytical study of induced anisotropy in idealized granular materials. Geotechnique, 39(4), 601–614. https://doi.org/10.1680/geot.1989.39.4.601
  • Sarfarazi, V., Zadeh, R. K., Asgari, K., & Wang, X. (2022). “H” shaped echelon joints under uniaxial loading. Geotechnical and Geological Engineering, 40(4), 1765–1787. https://doi.org/10.1007/s10706-021-01992-9
  • Seyedi Hosseininia, E. (2012). Investigating the micromechanical evolutions within inherently anisotropic granular materials using discrete element method. Granular Matter, 14(4), 483–503. https://doi.org/10.1007/s10035-012-0340-5
  • Shang, J., West, L., Hencher, S., & Zhao, Z. (2018). Tensile strength of large-scale incipient rock joints: A laboratory investigation. Acta Geotechnica, 13(4), 869–886. https://doi.org/10.1007/s11440-017-0620-7
  • Shi, J., & Guo, P. (2018). Fabric evolution of granular materials along imposed stress paths. Acta Geotechnica, 13(6), 1341–1354. https://doi.org/10.1007/s11440-018-0665-2
  • Singh, M., Rao, K., & Ramamurthy, T. (2002). Strength and deformational behaviour of a jointed rock mass. Rock Mechanics and Rock Engineering, 35(1), 45–64. https://doi.org/10.1007/s006030200008
  • Sun, Q., & Zheng, J. (2019). Two-dimensional and three-dimensional inherent fabric in cross-anisotropic granular soils. Computers and Geotechnics, 116, 103197. https://doi.org/10.1016/j.compgeo.2019.103197
  • Thaweeboon, S., Dasri, R., Sartkaew, S., & Fuenkajorn, K. (2017). Strength and deformability of small-scale rock mass models under large confinements. Bulletin of Engineering Geology and the Environment, 76(3), 1129–1141. https://doi.org/10.1007/s10064-016-0871-9
  • Vora, H. B., & Morgan, J. K. (2019). Microscale characterization of fracture growth and associated energy in granite and sandstone analogs: Insights using the discrete element method. Journal of Geophysical Research: Solid Earth, 124(8), 7993–8012. https://doi.org/10.1029/2019JB018155
  • Walton, G., Alejano, L. R., Arzua, J., & Markley, T. (2018). Crack damage parameters and dilatancy of artificially jointed granite samples under triaxial compression. Rock Mechanics and Rock Engineering, 51(6), 1637–1656. https://doi.org/10.1007/s00603-018-1433-1
  • Wang, H., Gao, Y., & Zhou, Y. (2022). Experimental and numerical studies of brittle rock-like specimens with unfilled cross fissures under uniaxial compression. Theoretical and Applied Fracture Mechanics, 117, 103167. https://doi.org/10.1016/j.tafmec.2021.103167
  • Wang, T.-T., & Huang, T.-H. (2009). A constitutive model for the deformation of a rock mass containing sets of ubiquitous joints. International Journal of Rock Mechanics and Mining Sciences, 46(3), 521–530. https://doi.org/10.1016/j.ijrmms.2008.09.011
  • Wu, H., Guo, N., & Zhao, J. (2018). Multiscale modeling and analysis of compaction bands in high-porosity sandstones. Acta Geotechnica, 13(3), 575–599. https://doi.org/10.1007/s11440-017-0560-2
  • Xu, T., Xu, Q., Tang, C-a., & Ranjith, P. (2013). The evolution of rock failure with discontinuities due to shear creep. Acta Geotechnica, 8(6), 567–581. https://doi.org/10.1007/s11440-013-0244-5
  • Yang, S. Q., Dai, Y. H., Han, L. J., & Jin, Z. Q. (2009). Experimental study on mechanical behavior of brittle marble samples containing different flaws under uniaxial compression. Engineering Fracture Mechanics, 76(12), 1833–1845. https://doi.org/10.1016/j.engfracmech.2009.04.005
  • Yang, X. X., Kulatilake, P. H. S. W., Chen, X., Jing, H. W., & Yang, S. Q. (2016a). Particle flow modeling of rock blocks with nonpersistent open joints under uniaxial compression. International Journal of Geomechanics, 16(6), 04016020. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000649
  • Yang, Y., Tang, X., Zheng, H., Liu, Q., & He, L. (2016b). Three-dimensional fracture propagation with numerical manifold method. Engineering Analysis with Boundary Elements, 72, 65–77. https://doi.org/10.1016/j.enganabound.2016.08.008
  • Zhang, H., Yuan, C., Chen, S., Yang, G., & Xia, H. (2021). Experimental study of fracture geometry characteristics on rock mass strength and crack propagation evolution law. European Journal of Environmental and Civil Engineering, pp, 1–30. https://doi.org/10.1080/19648189.2021.2015448
  • Zhang, X.-P., & Wong, L. N. Y. (2011). Cracking processes in rock-like material containing a single flaw under uniaxial compression: A numerical study based on parallel bonded-particle model approach. Rock Mechanics and Rock Engineering, 45(5), 711–737. https://doi.org/10.1007/s00603-011-0176-z
  • Zhao, S., & Zhou, X. (2017). Effects of particle asphericity on the macro-and micro-mechanical behaviors of granular assemblies. Granular Matter, 19(2), 1–18. https://doi.org/10.1007/s10035-017-0725-6
  • Zhao, S., Zhou, X., & Liu, W. (2015). Discrete element simulations of direct shear tests with particle angularity effect. Granular Matter, 17(6), 793–806. https://doi.org/10.1007/s10035-015-0593-x
  • Zhao, T., Crosta, G. B., Dattola, G., & Utili, S. (2018a). Dynamic fragmentation of jointed rock blocks during rockslide‐avalanches: Insights from discrete element analyses. Journal of Geophysical Research: Solid Earth, 123(4), 3250–3269. https://doi.org/10.1002/2017JB015210
  • Zhao, T., & Liu, Y. (2020). A novel random discrete element analysis of rock fragmentation. International Journal for Numerical and Analytical Methods in Geomechanics, 44(10), 1386–1395. https://doi.org/10.1002/nag.3067
  • Zhao, Y., Semnani, S. J., Yin, Q., & Borja, R. I. (2018b). On the strength of transversely isotropic rocks. International Journal for Numerical and Analytical Methods in Geomechanics, 42(16), 1917–1934. https://doi.org/10.1002/nag.2809
  • Zhao, Y., Zhang, L., Wang, W., Pu, C., Wan, W., & Tang, J. (2016). Cracking and stress–strain behavior of rock-like material containing two flaws under uniaxial compression. Rock Mechanics and Rock Engineering, 49(7), 2665–2687. https://doi.org/10.1007/s00603-016-0932-1

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.