194
Views
2
CrossRef citations to date
0
Altmetric
Original Articles

Simulation of internal and external sulfate attacks of concrete with a generic reactive transport-poromechanical model

, , , &
Pages 3679-3706 | Received 22 Oct 2021, Accepted 29 Oct 2022, Published online: 05 Dec 2022

References

  • Al Shamaa, M., Lavaud, S., Divet, L., Colliat, J. B., Nahas, G., & Torrenti, J. M. (2016). Influence of limestone filler and of the size of the aggregates on DEF. Cement and Concrete Composites, 71, 175–180. https://doi.org/10.1016/j.cemconcomp.2016.05.007
  • Barbarulo, B. (2002). Comportement des Matériaux Cimentaires: actions des sulfates et de la température [PhD thesis]. Ecole Normale Supérieure de Cachan – Université de Laval
  • Bary, B. (2008). Simplified coupled chemo-mechanical modeling of cement pastes behavior subjected to combined leaching and external sulfate attack. International Journal for Numerical and Analytical Methods in Geomechanics, 32(14), 1791–1816. https://doi.org/10.1002/nag.696
  • Bary, B., Lassin, A., Leterrier, N., Deville, E., & Bescop, P. L. (2014). Coupled chemo-transport-mechanical modelling and numerical simulation of external sulfate attack in mortars. Cement and Concrete Composites, 49, 70–83. https://doi.org/10.1016/j.cemconcomp.2013.12.010
  • Bichet, L. (2017). Mécanisme de transport dans la fissuration des matériaux hétérogenes: application a la durée de vie d’éxploitation des centrales nucléaires [PhD thesis]. Université de Montpellier II
  • Bisoffi-Sauve, M., Morel, S., & Dubois, F. (2019). Modelling mixed mode fracture of mortar joints in masonry buildings. Engineering Structures, 182, 316–330. https://doi.org/10.1016/j.engstruct.2018.11.064
  • Blal, N., Daridon, L., Monerie, Y., & Pagano, S. (2012). Artificial compliance inherent to the intrinsic cohesive zone models: Criteria and application to planar meshes. International Journal of Fracture, 178(1–2), 71–83. https://doi.org/10.1007/s10704-012-9734-y
  • Blanc, P., Lassin, A., Piantone, P., Azaroual, A., Jacquemet, N., Fabbri, A., & Gaucher, E. C. (2012). Thermoddem: A geochemical database focused on low temperature water/rock interactions and waste materials. Applied Geochemistry, 27(10), 2107–2116. https://doi.org/10.1016/j.apgeochem.2012.06.002
  • Bouzabata, H., Multon, S., Sellier, S., & Houari, H. (2012). Effects of restraint on expansion due to delayed ettringite formation. Cement and Concrete Research, 42(7), 1024–1031. https://doi.org/10.1016/j.cemconres.2012.04.001
  • Bradbury, M. H., & Baeyens, B. (2005). Modelling the sorption of Mn(II), Co(II), Ni(II), Zn(II), Cd(II), Eu(III), Am(III), Sn(IV), Th(IV), Np(V) and U(VI) on montmorillonite: Linear free energy relationships and estimates of surface binding constants for some selected heavy metals and actinides. Geochimica et Cosmochimica Acta, 69(4), 875–892. https://doi.org/10.1016/j.gca.2004.07.020
  • Bui, N. N. (2016). Expansion and stresses induced by crystallization in cement-based materials in presence of sulfate [PhD thesis]. Université ParisEst
  • Cefis, N., Comi, C., Piantone, P., Azaroual, A., Jacquemet, N., & Fabbri, A. (2017). Chemo-mechanical modelling of the external sulfate attack in concrete. Cement and Concrete Research, 93, 57–70. https://doi.org/10.1016/j.cemconres.2016.12.003
  • Coussy, O. (2004). Poromechanics. J. Wiley & Sons.
  • Damidot, D., & Glasser, F. P. (1992). Thermodynamic investigation of the CaOAl2O3−CaSO4−H2O system at 50 °C and 85 °C. Cement and Concrete Research, 22, 1179–1191.
  • De Dieuleveult, C., Erhel, J., & Kern, M. (2009). A global strategy for solving reactive transport equations. Journal of Computational Physics. 228(17), 6395–6410. pp. https://doi.org/10.1016/j.jcp.2009.05.044
  • Divet, L., & Randriambololona, R. (1998). Delayed ettringite formation: the effect of temperature and basicity on the interaction of sulphate and C-S-H phase. Cement and Concrete Research, 28(3), 357–363. https://doi.org/10.1016/S0008-8846(98)00006-4
  • Eddy, L., Awasthi, A., Matsumoto, K., Nagai, K., & Asamoto, S. (2017). Mesoscopic analysis of different expansion causes in concrete by 3D rigid body spring model. Seisan Kenkyu, 69(4), 181–185.
  • El Hachem, R., Rozière, E., Grondin, F., & Loukili, A. (2012). Multi-criteria analysis of the mechanism of degradation of Portland cement based mortars exposed to external sulphate attack. Cement and Concrete Research, 42(10), 1327–1335. https://doi.org/10.1016/j.cemconres.2012.06.005
  • El Hachem, R., Rozière, E., Grondin, F., & Loukili, A. (2012). New procedure to investigate external sulphate attack on cementitious materials. Cement and Concrete Composites, 34(3), 357–364. https://doi.org/10.1016/j.cemconcomp.2011.11.010
  • Erhel, J., & Migot, T. (2019). Characterizations of solutions in geochemistry: existence, uniqueness, and precipitation diagram. Computational Geosciences, 23(3), 523–535. https://doi.org/10.1007/s10596-018-9800-2
  • Flatt, R. J., & Scherer, G. W. (2008). Thermodynamics of crystallization stresses in DEF. Cement and Concrete Research, 38(3), 325–336. https://doi.org/10.1016/j.cemconres.2007.10.002
  • Garboczi, E. J., & Bentz, D.-P. (1997). Analytical formulas for interfacial transition zone properties. Advanced Cement Based Materials, 6(3–4), 99–108. https://doi.org/10.1016/S1065-7355(97)90016-X
  • Giorla, A. B., Scrivener, K. L., & Dunant, C. (2015). Influence of visco-elasticity on the stress development induced by alkali-silica reaction. Cement and Concrete Research, 70, 1–8. https://doi.org/10.1016/j.cemconres.2014.09.006
  • Gu, Y. (2018). Experimental pore scale analysis and mechanical modeling of cement-based materials submitted to delayed ettringite formation and external sulfate attacks [PhD thesis]. Université Paris-Est
  • Gu, Y., Martin, R.-P., Metalssi, O. O., Fen-Chong, T., & Dangla, P. (2019). Pore size analyses of cement paste exposed to external sulfate attack and delayed ettringite formation. Cement and Concrete Research, 123, 105766. https://doi.org/10.1016/j.cemconres.2019.05.011
  • Gu, Y., Dangla, P., Martin, R.-P., Metalssi, O. O., & Fen-Chong, T. (2022). Modeling the sulfate attack induced expansion of cementitious materials based on interface-controlled crystal growth mechanisms. Cement and Concrete Research, 152, 106676. https://doi.org/10.1016/j.cemconres.2021.106676
  • Haas, J., & Nonat, A. (2015). From csh to cash: Experimental study and thermodynamic modelling. Cement and Concrete Research, 68, 124–138. https://doi.org/10.1016/j.cemconres.2014.10.020
  • Haecker, C.-J., Garboczi, E. J., Bullard, J. W., Bohn, R. B., Sun, Z., Shah, S. P., & Voigt, T. (2005). Modeling the linear elastic properties of Portland cement paste. Cement and Concrete Research, 35(10), 1948–1960. https://doi.org/10.1016/j.cemconres.2005.05.001
  • Hashin, Z., & Monteiro, P. J. M. (2002). An inverse method to determine the elastic properties of the interphase between the aggregate and the cement paste. Cement and Concrete Research, 32(8), 1291–1300. https://doi.org/10.1016/S0008-8846(02)00792-5
  • Honorio, T., Bary, B., & Benboudjema, F. (2016). Multiscale estimation of ageing viscoelastic properties of cement-based materials: A combined analytical and numerical approach to estimate the behaviour at early age. Cement and Concrete Research, 85, 137–155. https://doi.org/10.1016/j.cemconres.2016.03.010
  • Idiart, A. E., Bisschop, J., Caballero, A., & Lura, P. (2012). A numerical and experimental study of aggregate-induced shinkrage craking in cementitious composites. Cement and Concrete Research, 42(2), 272–281. https://doi.org/10.1016/j.cemconres.2011.09.013
  • Idiart, A. E., López, C. M., & Carol, I. (2011). Chemo-mechanical analysis of concrete cracking and degradation due to external sulfate attack: A meso-scale model. Cement and Concrete Composites, 33(3), 411–423. https://doi.org/10.1016/j.cemconcomp.2010.12.001
  • Idiart, A. E., Laviña, M., Cochepin, B., & Pasteau, A. (2020). Hydro-chemo-mechanical modelling of long-term evolution of bentonite swelling. Applied Clay Science, 195, 105717. https://doi.org/10.1016/j.clay.2020.105717
  • Irbe, L., Beddoe, R. E., & Heinz, D. (2019). The role of aluminium in C A S H during sulfate attack on concrete. Cement and Concrete Research, 116, 71–80. https://doi.org/10.1016/j.cemconres.2018.11.012
  • Jabbour, J. (2018). Méthodes d’essais de vieillissement accéléré des bétons á l’échelle des ouvrages [PhD thesis]. Université ParisSaclay
  • Kamali-Bernard, S., Bernard, F., & Prince, W. (2009). Computer modelling of tritiated water diffusion test for cement based materials. Computational Materials Science, 45(2), 528–535. https://doi.org/10.1016/j.commatsci.2008.11.018
  • Karthik, M. M., Mander, J. B., & Hurlebaus, S. (2016). ASR/DEF related expansion in structural concrete: Model development and validation. Construction and Building Materials, 128, 238–247. https://doi.org/10.1016/j.conbuildmat.2016.10.084
  • Kchakech, B. (2016). Etude de l’influence de l’échauffement subi par un béton sur le risque d’expansions associées à la Réaction Sulfatique Interne [PhD thesis]. Université Paris-Est.
  • Kadeethum, T., Lee, S., Ballarin, F., Choo, J., & Nick, H. M. (2021). A locally conservative mixed finite element framework for coupled hydro-mechanical–chemical processes in heterogeneous porous media. Computers & Geosciences. 152, 104774. https://www.sciencedirect.com/science/article/pii/S0098300421000790. https://doi.org/10.1016/j.cageo.2021.104774
  • Kunther, W., Lothenbach, B., & Scrivener, K. L. (2013). On the relevance of volume increase for the length changes of mortar bars in sulfate solutions. Cement and Concrete Research, 46, 23–29. https://doi.org/10.1016/j.cemconres.2013.01.002
  • Lagneau, V., & van der Lee, J. (2010). Hytec results of the momas reactive transport benchmark. Computational Geosciences, 14(3), 435–449. https://doi.org/10.1007/s10596-009-9159-5
  • Leklou, A. N., Aubert, J. E., & Escadeillas, G. (2012). Effect of wetting-drying cycles on mortar samples affected by DEF. European Journal of Environmental and Civil Engineering, 16(5), 582–588. https://doi.org/10.1080/19648189.2012.668017
  • Lemarchand, E., Dormieux, L., & Ulm, F.-J. (2002). Elements of micromechanics of ASR-induced swelling in concrete structures. Concrete Science and Engineering, 4, 12–22.
  • Liaudat, J., Carol, I., & López, C. M. (2020). Model for alkali-silica reaction expansions in concrete using zero-thickness chemo-mechanical interface elements. International Journal of Solids and Structures, 207, 145–177. https://doi.org/10.1016/j.ijsolstr.2020.09.019
  • Lhonneur, J. (2021). Approche par changement d’échelle du vieillissement des bétons: expérimentations et simulations numériques [PhD thesis]. Université de Montpellier
  • Lothenbach, B., Kulik, D., Matschei, T., Balonis, M., Baquerizo, L., Dilnesa, B. Z., Miron, D. G., & Myers, R. (2019). Cemdata18: A chemical thermodynamic database for hydrated portland cements and alkaliactivated materials. Cement and Concrete Research, 115, 472–506. https://doi.org/10.1016/j.cemconres.2018.04.018
  • Malbois, M., Nedjar, B., Lavaud, S., Rospar, C., Divet, L., & Torrenti, J. M. (2019). On DEF expansion modelling in concrete structures under variable hydric conditions. Construction and Building Materials. 207, 396–402. https://doi.org/10.1016/j.conbuildmat.2019.02.142
  • Marquié, C., Dauzeres, A., Richard, B., & Nahas, G. (2019). Concrete aging in containment building and deep geological disposal facilities: the ODOBA project [Paper presentation]. Proceeding Transactions, SMiRT-25 Charlotte, NC, USA.
  • Martin, R.-P., Metalssi, O. O., & Toutlemonde, F. (2013). Importance of considering the coupling between transfer properties, alkali leaching and expansion in the modelling of concrete beams affected by internal swelling reactions. Construction and Building Materials. 49, 23–30. https://doi.org/10.1016/j.conbuildmat.2013.08.008
  • Miura, T., Maruyama, I., Nakamura, H., & Yamamoto, Y. (2017). Feedback system of ion transfer through cracks during deterioration of mortar due to sulfate attack evaluated by RBSM-truss network model. Journal of Advanced Concrete Technology, 15(10), 610–626. https://doi.org/10.3151/jact.15.610
  • Miura, T., Nakamura, H., & Yamamoto, Y. (2020). Impact of origination of expansion on three-dimensional expansion crack propagation process due to DEF evaluated by mesoscale discrete model. Construction and Building Materials. 260, 119911. https://doi.org/10.1016/j.conbuildmat.2020.119911
  • Monerie, Y., & Acary, V. (2001). Formulation dynamique d’un modèle de zone cohésive tridimensionnel couplant endommagement et frottements. Revue Européenne Des Éléments Finis, 10(2–4), 489–503. https://doi.org/10.1080/12506559.2001.11869264
  • Morel, F., & Morgan, J. (1972). A numerical method for computing equilibria in aqueous chemical systems. Environmental Science & Technology, 6(1), 58–67. https://doi.org/10.1021/es60060a006
  • Morenon, P., Multon, S., Sellier, A., Grimal, E., Hamon, F., & Bourdarot, E. (2017). Impact of stresses and restraints on ASR expansion. Construction and Building Materials. 140, 58–74. https://doi.org/10.1016/j.conbuildmat.2017.02.067
  • Mori, T., & Tanaka, K. (1973). Average stress in matrix and average elastic energy of materials with misfitting inclusions. Acta Metallurgica, 21(5), 571–574. https://doi.org/10.1016/0001-6160(73)90064-3
  • Neji, M., Bary, B., Bescop, P. L., & Burlion, N. (2015). Swelling behavior of ion exchange resins incorporated in tri-calcium silicate cement matrix: I. chemical analysis. Journal of Nuclear Materials. 467, 544–556. https://doi.org/10.1016/j.jnucmat.2015.10.013
  • Patel, R. A., Phung, Q. T., Seetharam, S. C., Perko, J., Jacque, D., Maes, N., De Schutter, G., Ye, G., & Van Breugel, K. (2016). Swelling behavior of ion exchange resins incorporated in tri-calcium silicate cement matrix: I. Chemical analysis. Cement and Concrete Research, 90, 52–72. https://doi.org/10.1016/j.cemconres.2016.09.015
  • Perales, F., Bourgeois, S., Chrysochoos, A., & Monerie, Y. (2008). Two field multibody method for periodic homogenization in fracture mechanics of non linear heterogeneous materials. Engineering Fracture Mechanics, 75(11), 3378–3398. https://doi.org/10.1016/j.engfracmech.2007.07.017
  • Perales, F., Dubois, F., Monerie, Y., Piar, B., & Stainier, L. (2010). A NonSmooth contact dynamics-based multi-domain solver. Code coupling (Xper) and application to fracture. European Journal of Computational Mechanics, 19(4), 389–417. https://doi.org/10.3166/ejcm.19.389-417
  • Planel, D. (2002). Les effets couplés de la précipitation d’espèces secondaires sur le comportement mécanique et la dégradation chimique des bétons [PhD thesis]. Université de Marne la Vallée.
  • Planel, D., Sercombe, J., Bescop, P. L., Adenot, F., & Torrenti, J. M. (2006). Long-term performance of cement paste during combined calcium leaching-suflate attack: Kinetics and size effect. Cement and Concrete Research, 36(1), 137–143. https://doi.org/10.1016/j.cemconres.2004.07.039
  • Qin, S., Zou, D., Liu, T., & Jivkov, A. (2020). A chemo-transport-damage model for concrete under external sulfate attack. Cement and Concrete Research, 132, 106048. https://doi.org/10.1016/j.cemconres.2020.106048
  • Salah, N., Mouad, J., Malachanne, E., Jamin, F., Dubois, F., Caro, A. S., GarciaDiaz, E., & El Youssoufi, M. S. (2019). Identification of a cohesive zone model for cement paste-aggregate interface in a shear test. European Journal of Environmental and Civil Engineering, 1–15. https://doi.org/10.1080/19648189.2019.1623082
  • Samson, E., & Marchand, J. (2007). Modeling the transport of ions in unsaturated cement-based materials. Computers & Structures, 85(23–24), 1740–1756. https://doi.org/10.1016/j.compstruc.2007.04.008
  • Salgues, M., Sellier, A., Multon, S., Bourdarot, E., & Grimal, E. (2014). DEF modelling based on thermodynamic equilibria and ionic transfers for structural analysis. European Journal of Environmental and Civil Engineering, 18(4), 1–26.
  • Seigneur, N., Lagneau, V., Corvisier, J., & Dauzéres, A. (2018). Recoupling flow and chemistry in variably saturated reactive transport modelling – An algorithm to accurately couple the feedback of chemistry on water consumption, variable porosity and flow. Advances in Water Resources, 122, 355–366. https://doi.org/10.1016/j.advwatres.2018.10.025
  • Sellier, A., & Multon, S. (2018). Chemical modelling of delayed ettringite formation for assessment of affected concrete structures. Cement and Concrete Research, 108, 72–86. https://doi.org/10.1016/j.cemconres.2018.03.006
  • Socié, A. (2019). Modélisation chimiomécanique de la fissuration de matériaux cimentaires: vieillissement et tenue des enceintes de confinement des centrales nucléaires [PhD thesis]. Université de Montpellier
  • Socié, A., Dubois, F., Monerie, Y., & Perales, F. (2021). Multibody approach for reactive transport modeling in discontinuous-heterogeneous porous media. Computational Geosciences, 25(5), 1473–1491. https://doi.org/10.1007/s10596-021-10058-x
  • Socié, A., Monerie, Y., & Perales, F. (2022). Effects of the microstructural uncertainties on the poroelastic and the diffusive properties of mortar. Journal of Theoretical, Computational and Applied Mechanics. https://doi.org/10.46298/jtcam.8849
  • Soive, A., Roziere, E., & Loukili, A. (2016). Parametrical study of the cementitous materials degradation under external sulfate attack through numerical modeling. Construction and Building Materials, 112, 267–275. https://doi.org/10.1016/j.conbuildmat.2016.02.187
  • Soive, A., & Tran, V. Q. (2017). External sulfate attack of cementitious materials: New insights gained through numerical modeling including dissolution/precipitation kinetics and surface complexation. Cement and Concrete Composites, 83, 263–272. https://doi.org/10.1016/j.cemconcomp.2017.07.024
  • Steefel, C. I., Appelo, C. A. J., Arora, B., Jacques, D., Kalbacher, T., Kolditz, O., Lagneau, V., Lichtner, P. C., Mayer, K. U., Meeussen, J. C. L., Molins, S., Moulton, D., Shao, H., Šimůnek, J., Spycher, N., Yabusaki, S. B., & Yeh, G. T. (2015). Reactive transport codes for subsurface environmental simulation. Computational Geosciences, 19(3), 445–478. https://doi.org/10.1007/s10596-014-9443-x
  • Steefel, C. I. (2019). Reactive transport at the crossroads. Reviews in Mineralogy and Geochemistry, 85(1), 1–26. pp. https://doi.org/10.2138/rmg.2019.85.1
  • Stora, E., Bary, B., He, Q.-C., Deville, E., & Montarnal, P. (2009). Modelling and simulations of the chemo-mechanical behaviour of leached cement-based materials leaching process and induced loss of stiffness. Cement and Concrete Research, 39(9), 763–772. https://doi.org/10.1016/j.cemconres.2009.05.010
  • Tennis, P. D., & Jenning, H. M. (1994). Model for the developing microstructure in Portland cement pastes. Journal of the American Ceramic Society, 77(12), 3161–3172. https://doi.org/10.1111/j.1151-2916.1994.tb04565.x
  • Tixier, R., & Mobasher, B. (2003). Modeling of damage in cement-based materials subjected to external sulfate attack. I: Formulation. II: Comparison with experiments. Journal of Materials in Civil Engineering, 15(4), 305–313. https://doi.org/10.1061/(ASCE)0899-1561(2003)15:4(305)
  • Ulm, J.-F., Constantinides, B., & Heukamp, F. H. (2004). Is concrete a poromechanics material? – A multiscale investigation of poroelastic properties. Materials and Structures, 37(1), 43–58. https://doi.org/10.1007/BF02481626
  • van Der Lee, J., De Windt, L., Lagneau, V., & Goblet, P. (2003). Module-oriented modeling of reactive transport with HYTEC. Computers & Geosciences. 29(3), 265–275. https://doi.org/10.1016/S0098-3004(03)00004-9
  • Venzal, V., Morel, S., Parent, T., & Dubois, F. (2020). Frictional cohesive zone model for quasi-brittle fracture: Mixed-mode and coupling between cohesive and frictional behaviors. International Journal of Solids and Structures, 198, 17–30. https://doi.org/10.1016/j.ijsolstr.2020.04.023

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.