383
Views
0
CrossRef citations to date
0
Altmetric
Original Articles

Effects of hydration mechanism on mechanical properties of diatomite-cement composites

&
Pages 3707-3721 | Received 30 Aug 2022, Accepted 07 Nov 2022, Published online: 21 Nov 2022

References

  • Ahmadi, Z., Esmaeili, J., Kasaei, J., & Hajialioghli, R. (2018). Properties of sustainable cement mortars containing high volume of raw diatomite. Sustainable Materials and Technologies, 16, 47–53. https://doi.org/10.1016/j.susmat.2018.05.001
  • Akbarpour, A., & Mahdikhani, M. (2022). Effects of natural zeolite and sulfate environment on mechanical properties and permeability of cement–bentonite cutoff wall. European Journal of Environmental and Civil Engineering, 1–14. https://doi.org/10.1080/19648189.2022.2075940
  • Ashraf, M., Iqbal, M. F., Rauf, M., Ashraf, M. U., Ulhaq, A., Muhammad, H., & Liu, Q. F. (2022). Developing a sustainable concrete incorporating bentonite clay and silica fume: Mechanical and durability performance. Journal of Cleaner Production, 337, 130315. https://doi.org/10.1016/j.jclepro.2021.130315
  • ASTM C618. (2003). Standard specification for coal fly ash and raw or calcined natural pozzolan for use in concrete. American society for testing and materials.
  • Bhattacharya, M., & Harish, K. V. (2018). An integrated approach for studying the hydration of portland cement systems containing silica fume. Construction and Building Materials, 188, 1179–1192. https://doi.org/10.1016/j.conbuildmat.2018.08.114
  • Chen, X., Zhou, M., Shen, W., Zhu, G., & Ge, X. (2018). Mechanical properties and microstructure of metakaolin-based geopolymer compound-modified by polyacrylic emulsion and polypropylene fibers. Construction and Building Materials, 190, 680–690. https://doi.org/10.1016/j.conbuildmat.2018.09.116
  • Costa, J. A. C., Martinelli, A. E., do Nascimento, R. M., & Mendes, A. M. (2020). Microstructural design and thermal characterization of composite diatomite-vermiculite paraffin-based form-stable PCM for cementitious mortars. Construction and Building Materials, 232, 117167. https://doi.org/10.1016/j.conbuildmat.2019.117167
  • Degirmenci, N., & Yilmaz, A. (2009). Use of diatomite as partial replacement for Portland cement in cement mortars. Construction and Building Materials, 23(1), 284–288. https://doi.org/10.1016/j.conbuildmat.2007.12.008
  • Figarska-Warchoł, B., Stańczak, G., Rembiś, M., & Toboła, T. (2015). Diatomaceous rocks of the Jawornik deposit (the Polish Outer Carpathians): Petrophysical and petrographical evaluation. Geology, Geophysics & Environment, 41(4), 311–331. https://doi.org/10.7494/geol.2015.41.4.311
  • Ganeshan, M., & Venkataraman, S. (2021). Durability and microstructural studies on fly ash blended self-compacting geopolymer concrete. European Journal of Environmental and Civil Engineering, 25(11), 2074–2088. https://www.tandfonline.com/loi/tece20. https://doi.org/10.1080/19648189.2019.1615991
  • Genç, S. S. (2006). The characteristics of the behaviour and usebility of concrete with diatomite under load [Master’s thesis, Graduate School of Natural and Applied Sciences, Ondokuzmayıs University].
  • Gerengi, H., Kocak, Y., Jazdzewska, A., & Kurtay, M. (2017). Corrosion behavior of concrete produced with diatomite and zeolite exposed to chlorides. Computers and Concrete, 19(2), 161–169. https://doi.org/10.12989/cac.2017.19.2.161
  • Gökkonca, E. K. (2010). Analysing mortar’s some mechanical and physical characteristics changes additive with diatomites [Master’s thesis, Graduate School of Natural and Applied Sciences, Pamukkale University].
  • Hasanbeigi, A., Price, L., & Lin, E. (2012). Emerging energy-efficiency and CO2 emission-reduction technologies for cement and concrete production: A technical review. Renewable and Sustainable Energy Reviews, 16(8), 6220–6238. https://doi.org/10.1016/j.rser.2012.07.019
  • Hidalgo, A., Petit, S., Domingo, C., Alonso, C., & Andrade, C. (2007). Microstructural characterization of leaching effects in cement pastes due to neutralisation of their alkaline nature: Part I: Portland cement pastes. Cement and Concrete Research, 37(1), 63–70. https://doi.org/10.1016/j.cemconres.2006.10.002
  • Huang, X., Jiang, M., Zhao, X., & Tang, C. (2016). Mechanical properties and hydration mechanisms of high-strength fluorogypsum-blast furnace slag-based hydraulic cementitious binder. Construction and Building Materials, 127, 137–143. https://doi.org/10.1016/j.conbuildmat.2016.09.152
  • Kapeluszna, E., Szudek, W., Wolka, P., & Zieliński, A. (2021). Implementation of alternative mineral additives in low-emission sustainable cement composites. Materials, 14(21), 6423. https://doi.org/10.3390/ma14216423
  • Kastis, D., Kakali, G., Tsivilis, S., & Stamatakis, M. G. (2006). Properties and hydration of blended cements with calcareous diatomite. Cement and Concrete Research, 36(10), 1821–1826. https://doi.org/10.1016/j.cemconres.2006.05.005
  • Kocak, Y. (2017). The effects of super plasticizer and trass on the cement hydration. Pamukkale University Journal of Engineering Sciences, 23(3), 184–192. https://doi.org/10.5505/pajes.2016.80008
  • Kocak, Y. (2020). Effects of metakaolin on the hydration development of Portland–composite cement. Journal of Building Engineering, 31, 101419. https://doi.org/10.1016/j.jobe.2020.101419
  • Kurtay, M., Gerengi, H., Kocak, Y., Chidiebere, M. A., & Yildiz, M. (2020). The potency of zeolite and diatomite on the corrosive destruction of reinforcing steel in 1 M HNO3 environment. Construction and Building Materials, 236, 117572. https://doi.org/10.1016/j.conbuildmat.2019.117572
  • Lauermannová, A.-M., Lojka, M., Jankovský, O., Faltysová, I., Pavlíková, M., Pivák, A., Záleská, M., & Pavlík, Z. (2021). High-performance magnesium oxychloride composites with silica sand and diatomite. Journal of Materials Research and Technology, 11, 957–969. https://doi.org/10.1016/j.jmrt.2021.01.028
  • Lei, D. Y., Guo, L. P., Sun, W., Liu, J., Shu, X., & Guo, X. L. (2016). A new dispersing method on silica fume and its influence on the performance of cement-based materials. Construction and Building Materials, 115, 716–726. https://doi.org/10.1016/j.conbuildmat.2016.04.023
  • Lei, L., & Zhang, Y. (2021). Preparation of isoprenol ether-based polycarboxylate superplasticizers with exceptional dispersing power in alkali-activated slag: Comparison with ordinary Portland cement. Composites Part B: Engineering, 223, 109077. https://doi.org/10.1016/j.compositesb.2021.109077
  • Lenka, B. P., Majhi, R. K., Singh, S., & Nayak, A. N. (2022). Eco-friendly and cost-effective concrete utilizing high-volume blast furnace slag and demolition waste with lime. European Journal of Environmental and Civil Engineering, 26(11), 5351–5373. https://doi.org/10.1080/19648189.2021.1896581
  • Li, J., Zhang, W., Li, C., & Monteiro, P. J. (2019). Green concrete containing diatomaceous earth and limestone: Workability, mechanical properties, and life-cycle assessment. Journal of Cleaner Production, 223, 662–679. https://doi.org/10.1016/j.jclepro.2019.03.077
  • Liu, J., Qin, Q., & Yu, Q. (2020). The effect of size distribution of slag particles obtained in dry granulation on blast furnace slag cement strength. Powder Technology, 362, 32–36. https://doi.org/10.1016/j.powtec.2019.11.115
  • Liu, J., Wu, K., Wang, Y., & Yang, Y. (2017). Effects of fly ash/diatomite admixture with variable particle sizes on the mechanical properties and porosity of concrete. Journal of Wuhan University of Technology-Mater. Sci. Ed, 32(5), 1072–1079. https://doi.org/10.1007/s11595-017-1713-8
  • Liu, R., Yang, Y., Zhao, X., & Pang, B. (2021). Quantitative phase analysis and microstructural characterization of Portland cement blends with diatomite waste using the Rietveld method. Journal of Materials Science, 56(2), 1242–1254. https://doi.org/10.1007/s10853-020-05429-1
  • Mastali, M., & Dalvand, A. (2018). The impact resistance and mechanical properties of fiber reinforced self-compacting concrete (SCC) containing nano-SiO2 and silica fume. European Journal of Environmental and Civil Engineering, 22(1), 1–27. https://doi.org/10.1080/19648189.2016.1177604
  • Monteagudo, S. M., Moragues, A., Gálvez, J. C., Casati, M. J., & Reyes, E. (2014). The degree of hydration assessment of blended cement pastes by differential thermal and thermogravimetric analysis. Thermochimica Acta, 592, 37–51. https://doi.org/10.1016/j.tca.2014.08.008
  • Paiva, H., Silva, A. S., Velosa, A., Cachim, P., & Ferreira, V. M. (2017). Microstructure and hardened state properties on pozzolan-containing concrete. Construction and Building Materials, 140, 374–384. https://doi.org/10.1016/j.conbuildmat.2017.02.120
  • Pınarcı, İ., & Kocak, Y. (2022). Hydration mechanisms and mechanical properties of pumice substituted cementitious binder. Construction and Building Materials, 335, 127528. https://doi.org/10.1016/j.conbuildmat.2022.127528
  • Pokorny, J., Zaleska, M., Pavlikova, M., & Pavlik, Z. (2019). Properties of fine-grained concrete with admixture of diatomite powder. IOP Conference Series: Materials Science and Engineering, 603(2), 022045. https://doi.org/10.1088/1757-899X/603/2/022045
  • Qian, T., Li, J., Min, X., Deng, Y., Guan, W., & Ning, L. (2015). Diatomite: A promising natural candidate as carrier material for low, middle and high temperature phase change material. Energy Conversion and Management, 98, 34–45. https://doi.org/10.1016/j.enconman.2015.03.071
  • Sandhu, R. K., & Siddique, R. (2022). Properties of sustainable self-compacting concrete made with rice husk ash. European Journal of Environmental and Civil Engineering, 26(13), 6670–6694. https://doi.org/10.1080/19648189.2021.1955747
  • Saraya, M. E. S. I. (2014). Study physico-chemical properties of blended cements containing fixed amount of silica fume, blast furnace slag, basalt and limestone, a comparative study. Construction and Building Materials, 72, 104–112. https://doi.org/10.1016/j.conbuildmat.2014.08.071
  • Sarı, A., Hekimoğlu, G., Tyagi, V. V., & Sharma, R. K. (2020). Evaluation of pumice for development of low-cost and energy-efficient composite phase change materials and lab-scale thermoregulation performances of its cementitious plasters. Energy, 207, 118242. https://doi.org/10.1016/j.energy.2020.118242
  • Schöler, A., Lothenbach, B., Winnefeld, F., & Zajac, M. (2015). Hydration of quaternary Portland cement blends containing blast-furnace slag, siliceous fly ash and limestone powder. Cement and Concrete Composites, 55, 374–382. https://doi.org/10.1016/j.cemconcomp.2014.10.001
  • Sepehr, M. N., Amrane, A., Karimaian, K. A., Zarrabi, M., & Ghaffari, H. R. (2014). Potential of waste pumice and surface modified pumice for hexavalent chromium removal: Characterization, equilibrium, thermodynamic and kinetic study. Journal of the Taiwan Institute of Chemical Engineers, 45(2), 635–647. https://doi.org/10.1016/j.jtice.2013.07.005
  • Sun, M., Zou, C., & Xin, D. (2020). Pore structure evolution mechanism of cement mortar containing diatomite subjected to freeze-thaw cycles by multifractal analysis. Cement and Concrete Composites, 114, 103731. https://doi.org/10.1016/j.cemconcomp.2020.103731
  • Tran, Y. T., Lee, J., Kumar, P., Kim, K. H., & Lee, S. S. (2019). Natural zeolite and its application in concrete composite production. Composites Part B: Engineering, 165, 354–364. https://doi.org/10.1016/j.compositesb.2018.12.084
  • TS 25. (2015). Natural pozzolan (Trass) for use in cement and concrete - Definitions, requirements and conformity criteria. Turkish Standards.
  • TS EN 196-1. (2016). Methods of testing cement–Part 1: Determination of strength. Turkish Standards.
  • TS EN 196-3. (2017). Methods of testing cement–Part 3: Determination of setting time and soundness. Turkish Standards.
  • TS EN 197-1. (2002). Cement– Part 1: Compositions and conformity criteria for common cements. Turkish Standards.
  • Türker, P., & Yeğinobalı, A. (2003). Comparison of hydration products of different pozzolanic systems. Cement and Concrete World, 46, 52–66.
  • Wen, R., Zhang, X., Huang, Z., Fang, M., Liu, Y., Wu, X., Min, X., Gao, W., & Huang, S. (2018). Preparation and thermal properties of fatty acid/diatomite form-stable composite phase change material for thermal energy storage. Solar Energy Materials and Solar Cells, 178, 273–279. https://doi.org/10.1016/j.solmat.2018.01.032
  • Yao, G., Lei, J., Zhang, X., Sun, Z., Zheng, S., & Komarneni, S. (2018). Mechanism of zeolite X crystallization from diatomite. Materials Research Bulletin, 107, 132–138. https://doi.org/10.1016/j.materresbull.2018.07.021
  • Zhang, B., Tan, H., Shen, W., Xu, G., Ma, B., & Ji, X. (2018). Nano-silica and silica fume modified cement mortar used as Surface Protection Material to enhance the impermeability. Cement and Concrete Composites, 92, 7–17. https://doi.org/10.1016/j.cemconcomp.2018.05.012
  • Zhao, Y., Gao, J., Xu, Z., Li, S., Luo, X., & Chen, G. (2021). Long-term hydration and microstructure evolution of blended cement containing ground granulated blast furnace slag and waste clay brick. Cement and Concrete Composites, 118, 103982. https://doi.org/10.1016/j.cemconcomp.2021.103982

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.