236
Views
4
CrossRef citations to date
0
Altmetric
Original Articles

Microstructure and chemo-physical characterizations, thermal properties, and modeling of the compression stress-strain behavior of lime-based roof and screed paste

, & ORCID Icon
Pages 3722-3742 | Received 14 Jul 2022, Accepted 15 Nov 2022, Published online: 25 Nov 2022

References

  • Anderegg, F. (1939). Strength of glass fires. Industrial & Engineering Chemistry, 31(3), 290–298. https://doi.org/10.1021/ie50351a012
  • Angélica Alvarez Lemus, M., Castañeda, O. J. O., Hernández Pérez, A. D., & González, R. L. (2014). An alcohol-free SiO2 sol-gel matrix functionalized with acetic acid as drug reservoir for the controlled release of pentoxifylline. Journal of Nanomaterials, 2014, 1–8. https://doi.org/10.1155/2014/853967
  • Ashraf, W., & Olek, J. (2016). Carbonation behavior of hydraulic and non-hydraulic calcium silicates: potential of utilizing low-lime calcium silicates in cement-based materials. Journal of Materials Science, 51(13), 6173–6191. https://doi.org/10.1007/s10853-016-9909-4
  • ASTM C39. (2011). Standard test method for compressive strength of cylindrical concrete specimens USA. ASTM.
  • Aydın, S., & Baradan, B. (2007). Effect of pumice and fly ash incorporation on high temperature resistance of cement based mortars. Cement and Concrete Research, 37(6), 988–995. https://doi.org/10.1016/j.cemconres.2007.02.005
  • B EN 1015-18. (2002). Methods of test for mortar for masonry. Part 18: Determination of water absorption coefficient due to capillary action of hardened mortar. British Standards Institution.
  • Balun, B., & Karataş, M. (2021). Influence of curing conditions on pumice-based alkali activated composites incorporating Portland cement. Journal of Building Engineering, 43, 102605. https://doi.org/10.1016/j.jobe.2021.102605
  • Bouchair, A. (2008). Steady state theoretical model of fired clay hollow bricks for enhanced external wall thermal insulation. Building and Environment, 43(10), 1603–1618. https://doi.org/10.1016/j.buildenv.2007.10.005
  • Bowen, D. (1968). Fibre-reinforced ceramics. Fibre Science and Technology, 1(2), 85–112. https://doi.org/10.1016/0015-0568(68)90001-8
  • Butt, A., Ejaz, S., Baron, J., Ikram, M., & Ali, S. (2015). CaO nanoparticles as a potential drug delivery agent for biomedical applications. Digest Journal of Nanomaterials & Biostructures (DJNB), 10(3).
  • Cooke, T. F. (1991). Inorganic fibers—a literature review. Journal of the American Ceramic Society, 74(12), 2959–2978. https://doi.org/10.1111/j.1151-2916.1991.tb04289.x
  • de França, M. S., Cazacliu, B., Kränkel, T., & Savastano, Jr, H. (2022). Influence of measuring system on rheological behavior of PVA-fiber reinforced mortars. Construction and Building Materials, 314, 125613. https://doi.org/10.1016/j.conbuildmat.2021.125613
  • Dylewski, R., & Adamczyk, J. (2014). The comparison of thermal insulation types of plaster with cement plaster. Journal of Cleaner Production, 83, 256–262. https://doi.org/10.1016/j.jclepro.2014.07.042
  • E BS. (2010). Building lime–part 2: Test methods.
  • Emad, W., Mohammed, A., & Kurda, R. (2022). Comparison between two nonlinear models to predict the stress–strain behavior, modulus of elasticity, and toughness of the flowable cement paste. Iranian Journal of Science and Technology, Transactions of Civil Engineering, 46(3), 2131–2145. https://doi.org/10.1007/s40996-021-00700-0
  • EN 197-1 BS. (2011). Cement–Part 1: Composition, specifications and conformity criteria for common. European Committee for Standardisation.
  • Espitia Morales, A. F., & Castellanos, N. T. (2021). Assessment of the compressive strength of lime mortars with admixtures, subjected to two curing environments. Ingeniería e Investigación, 42(2), e91364. https://doi.org/10.15446/ing.investig.91364
  • Hong, L., Chen, Y., Li, T., Gao, P., & Sun, L. (2020). Microstructure and bonding behavior of fiber-mortar interface in fiber-reinforced concrete. Construction and Building Materials, 232, 117235. https://doi.org/10.1016/j.conbuildmat.2019.117235
  • Kasikov, A. G., Shchelokova, E. A., & Dvornikova, A. M. (2021). Recovery of rhenium from sulfuric acid solution by TOPO-impregnated silica sorbents. Separation Science and Technology, 56(2), 242–251. https://doi.org/10.1080/01496395.2020.1718709
  • Kılıç, A., & Sertabipoğlu, Z. (2015). Effect of heat treatment on pozzolanic activity of volcanic pumice used as cementitious material. Cement and Concrete Composites, 57, 128–132. https://doi.org/10.1016/j.cemconcomp.2014.12.006
  • Kouassi, F. A., Dauxois, J.-Y., Duprat, F., De Larrard, T., & Deby, F. (2022). Engineering statistical models for carbonation depth. European Journal of Environmental and Civil Engineering, 1–24. https://doi.org/10.1080/19648189.2022.2036244
  • Lanas, J., & Alvarez-Galindo, J. I. (2003). Masonry repair lime-based mortars: factors affecting the mechanical behavior. Cement and Concrete Research, 33(11), 1867–1876. https://doi.org/10.1016/S0008-8846(03)00210-2
  • Longo, F., Lassandro, P., Moshiri, A., Phatak, T., Aiello, M. A., & Krakowiak, K. J. (2020). Lightweight geopolymer-based mortars for the structural and energy retrofit of buildings. Energy and Buildings, 225, 110352. https://doi.org/10.1016/j.enbuild.2020.110352
  • Mohammed, A., Salih, A., & Raof, H. (2020). Vipulanandan constitutive models to predict the rheological properties and stress–strain behavior of cement grouts modified with metakaolin. Journal of Testing and Evaluation, 48(5), 20180271–20183945. https://doi.org/10.1520/JTE20180271
  • Mohseni-Bandpei, A., Eslami, A., Kazemian, H., Zarrabi, M., & Al-Musawi, T. J. (2020). A high density 3-aminopropyltriethoxysilane grafted pumice-derived silica aerogel as an efficient adsorbent for ibuprofen: Characterization and optimization of the adsorption data using response surface methodology. Environmental Technology & Innovation, 18, 100642. https://doi.org/10.1016/j.eti.2020.100642
  • Morales, M., Juárez, M., López-Ochoa, L., & Doménech, J. (2011). Study of the geometry of a voided clay brick using rectangular perforations to optimize its thermal properties. Applied Thermal Engineering, 31(11–12), 2063–2065. https://doi.org/10.1016/j.applthermaleng.2011.02.033
  • Morsy, M., Rashad, A. M., Shoukry, H., Mokhtar, M., & El-Khodary, S. (2020). Development of lime-pozzolan green binder: The influence of anhydrous gypsum and high ambient temperature curing. Journal of Building Engineering, 28, 101026. https://doi.org/10.1016/j.jobe.2019.101026
  • Nogueira, R., Pinto, A. P. F., & Gomes, A. (2018). Design and behavior of traditional lime-based plasters and renders. Review and critical appraisal of strengths and weaknesses. Cement and Concrete Composites, 89, 192–204. https://doi.org/10.1016/j.cemconcomp.2018.03.005
  • Olaniyan, S. A. (2020). Towards sustainable composite building material: Integrating lime with slag for reduced mortar thermal conductivity. European Journal of Engineering and Technology Research, 5(4), 469–474. https://doi.org/10.24018/ejeng.2020.5.4.855
  • Passuello, A., Moriconi, G., & Shah, S. P. (2009). Cracking behavior of concrete with shrinkage reducing admixtures and PVA fibers. Cement and Concrete Composites, 31(10), 699–704. https://doi.org/10.1016/j.cemconcomp.2009.08.004
  • Peng, J.-L., Du, T., Zhao, T.-S., Song, X-q., & Tang, J.-J. (2019). Stress–strain relationship model of recycled concrete based on strength and replacement rate of recycled coarse aggregate. Journal of Materials in Civil Engineering, 31(9), 04019189. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002847
  • Rahimzadeh, C. Y., Mohammed, A. S., & Barzinjy, A. A. (2022). Microstructure characterizations, thermal analysis, and compression stress–strain behavior of lime-based plaster. Construction and Building Materials, 350, 128921. https://doi.org/10.1016/j.conbuildmat.2022.128921
  • Ranjbar, N., & Zhang, M. (2020). Fiber-reinforced geopolymer composites: A review. Cement and Concrete Composites, 107, 103498. https://doi.org/10.1016/j.cemconcomp.2019.103498
  • Rashad, A. M. (2019). A short manual on natural pumice as a lightweight aggregate. Journal of Building Engineering, 25, 100802. https://doi.org/10.1016/j.jobe.2019.100802
  • Rashad, A. M. (2021). An overview of pumice stone as a cementitious material–the best manual for civil engineer. Silicon, 13(2), 551–572. https://doi.org/10.1007/s12633-020-00469-3
  • Rashad, A. M., Essa, G. M., & Morsi, W. (2022). Traditional cementitious materials for thermal insulation. Arabian Journal for Science and Engineering, 47(10), 12931–12943. https://doi.org/10.1007/s13369-022-06718-4
  • Safari, Z., Kurda, R., Al-Hadad, B., Mahmood, F., & Tapan, M. (2020). Mechanical characteristics of pumice-based geopolymer paste. Resources, Conservation and Recycling, 162, 105055. https://doi.org/10.1016/j.resconrec.2020.105055
  • Sajedi, F., & Razak, H. A. (2011). Comparison of different methods for activation of ordinary Portland cement-slag mortars. Construction and Building Materials, 25(1), 30–38. https://doi.org/10.1016/j.conbuildmat.2010.06.060
  • Salih, N., & Mohammed, A. (2017). Characterization and modeling of long-term stress–strain behavior of water confined pre-saturated gypsum rock in Kurdistan Region, Iraq. Journal of Rock Mechanics and Geotechnical Engineering, 9(4), 741–748. https://doi.org/10.1016/j.jrmge.2017.03.009
  • Sari, D., & Pasamehmetoglu, A. (2005). The effects of gradation and admixture on the pumice lightweight aggregate concrete. Cement and Concrete Research, 35(5), 936–942. https://doi.org/10.1016/j.cemconres.2004.04.020
  • Sever, K., Atagür, M., Tunçalp, M., Altay, L., Seki, Y., & Sarıkanat, M. (2019). The effect of pumice powder on mechanical and thermal properties of polypropylene. Journal of Thermoplastic Composite Materials, 32(8), 1092–1106. https://doi.org/10.1177/0892705718785692
  • Van Balen, K., & Van Gemert, D. (1994). Modelling lime mortar carbonation. Materials and Structures, 27(7), 393–398. https://doi.org/10.1007/BF02473442
  • Vipulanandan, C., & Mohammed, A. (2019). Smart cement compressive piezoresistive, stress-strain, and strength behavior with nanosilica modification. Journal of Testing and Evaluation, 47(2), 20170105–20171501. https://doi.org/10.1520/JTE20170105
  • Wong, C. W., Chan, Y. S., Jeevanandam, J., Pal, K., Bechelany, M., Elkodous, M. A., & El-Sayyad, G. S. (2020). Response surface methodology optimization of mono-dispersed MgO nanoparticles fabricated by ultrasonic-assisted sol–gel method for outstanding antimicrobial and antibiofilm activities. Journal of Cluster Science, 31(2), 367–389. https://doi.org/10.1007/s10876-019-01651-3
  • Yadollahi, M. M., Demirboğa, R., & Polat, R. (2014). Effect of heat treatment temperature on ground pumice activation in geopolymer composites. Science and Engineering of Composite Materials, 21(3). https://doi.org/10.1515/secm-2013-0100
  • Yang, K.-H., Lee, Y., & Hwang, Y.-H. (2019). A stress-strain model for brick prism under uniaxial compression. Advances in Civil Engineering, 2019, 1–10. https://doi.org/10.1155/2019/7682575
  • Yang, K.-H., Mun, J.-H., & Hwang, S.-H. (2021). Compressive stress-strain model for confined lightweight concrete based on brittleness number. KSCE Journal of Civil Engineering, 25(8), 3041–3053. https://doi.org/10.1007/s12205-021-1840-9
  • Yang, X.-Y., Chen, L.-H., Li, Y., Rooke, J. C., Sanchez, C., & Su, B.-L. (2017). Hierarchically porous materials: synthesis strategies and structure design. Chemical Society Reviews, 46(2), 481–558. https://doi.org/10.1039/c6cs00829a
  • Zofka, A. (2013). Evaluating applications of field spectroscopy devices to fingerprint commonly used construction materials. Transportation Research Board.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.