192
Views
0
CrossRef citations to date
0
Altmetric
Original Articles

A fatigue constitutive model for rock masses based on cross-applications of rheological theory

, ORCID Icon, , , &
Pages 3743-3762 | Received 23 Dec 2021, Accepted 20 Nov 2022, Published online: 05 Dec 2022

References

  • Ahmadova, A., & Mahmudov, N. I. (2021). Langevin differential equations with general fractional orders and their applications to electric circuit theory. The Journal of Computational and Applied Mathematics, 388, 113299. https://doi.org/10.1016/j.cam.2020.113299
  • Ahmadova, A., Huseynov, I. T., Fernandez, A., & Mahmudov, N. I. (2021). Trivariate Mittag-Leffler functions used to solve multi-order systems of fractional differential equations. Communications in Nonlinear Science and Numerical Simulation, 97, 105735. https://doi.org/10.1016/j.cnsns.2021.105735
  • Caillerie, D., & Dascalu, C. (2011). One-dimensional localization solutions for time-dependent damage. International Journal of Damage Mechanics, 20(8), 1178–1197. https://doi.org/10.1177/1056789510395553
  • Chen, Y., Lin, H., Wang, Y., & Zhao, Y. (2020). Damage statistical empirical model for fractured rock under freezing-Thawing cycle and loading. Geofluids, 2020, 1–12. https://doi.org/10.1155/2020/8842471
  • Chen, Y., Lin, H., Wang, Y., Xie, S., Zhao, Y., & Yong, W. (2021). Statistical damage constitutive model based on the Hoek–Brown criterion. Archives of Civil and Mechanical Engineering, 21(3), 117. https://doi.org/10.1007/s43452-021-00270-y
  • Chen, Y., Lin, H., Xie, S., Ding, X., He, D., Yong, W., & Gao, F. (2022). Effect of joint microcharacteristics on macroshear behaviour of single-bolted rock joints by the numerical modelling with PFC. Environmental Earth Sciences, 81(10), 276. https://doi.org/10.1007/s12665-022-10411-y
  • Dornan, T., O’Sullivan, G., O’Riain, N., Stueeken, E., & Goodhue, R. (2020). The application of machine learning methods to aggregate geochemistry predicts quarry source location: An example from Ireland. Computers & Geosciences, 140, 104495. https://doi.org/10.1016/j.cageo.2020.104495
  • Fan, X., Yu, H., Deng, Z., He, Z., & Zhao, Y. (2022). Cracking and deformation of cuboidal sandstone with a single nonpenetrating flaw under uniaxial compression. Theoretical and Applied Fracture Mechanics, 119, 103284. https://doi.org/10.1016/j.tafmec.2022.103284
  • Gatelier, N., Pellet, F., & Loret, B. (2002). Mechanical damage of an anisotropic porous rock in cyclic triaxial tests. International Journal of Rock Mechanics & Mining Sciences, 39(3), 335–354. https://doi.org/10.1016/S1365-1609(02)00029-1
  • Geranmayeh Vaneghi, R., Thoeni, K., Dyskin, A. V., Sharifzadeh, M., & Sarmadivaleh, M. (2020). Fatigue damage response of typical crystalline and granular rocks to uniaxial cyclic compression. International Journal of Fatigue, 138, 105667. https://doi.org/10.1016/j.ijfatigue.2020.105667
  • He, M., Li, N., Zhu, C., Chen, Y., & Wu, H. (2019). Experimental investigation and damage modeling of salt rock subjected to fatigue loading. International Journal of Rock Mechanics and Mining Sciences, 114, 17–23. https://doi.org/10.1016/j.ijrmms.2018.12.015
  • Hu, J. H., Wen, G. P., Lin, Q. B., Cao, P., & Li, S. (2020). Mechanical properties and crack evolution of double-layer composite rock-like specimens with two parallel fissures under uniaxial compression. Theoretical and Applied Fracture Mechanics, 108, 102610. https://doi.org/10.1016/j.tafmec.2020.102610
  • Huang, Y.-H., Yang, S.-Q., & Tian, W.-L. (2019). Cracking process of a granite specimen that contains multiple pre-existing holes under uniaxial compression. Fatigue & Fracture of Engineering Materials & Structures, 42(6), 1341–1356. https://doi.org/10.1111/ffe.12990
  • Lee, S. W., Park, K. H., & Lee, J. G. (2011). Blast-induced damage identification of rock mass using wavelet transform analysis. Procedia Engineering, 14, 3142–3146. https://doi.org/10.1016/j.proeng.2011.07.395
  • Lei, D., Lin, H., & Wang, Y. (2022). Damage characteristics of shear strength of joints under freeze–thaw cycles. Archive of Applied Mechanics, 92(5), 1615–1631. https://doi.org/10.1007/s00419-022-02136-y
  • Li, T., Pei, X., Wang, D., Huang, R., & Tang, H. (2019). Nonlinear behaviour and damage model for fractured rock under cyclic loading based on energy dissipation principle. Engineering Fracture Mechanics, 206, 330–341. https://doi.org/10.1016/j.engfracmech.2018.12.010
  • Li, X., Peng, J., Xie, Y., Li, Q., Zhou, T., Wang, J., & Zheng, W. (2022). Influence of high-temperature treatment on strength and failure behaviours of a quartz-rich sandstone under true triaxial condition. Lithosphere, 2022(Special 10), 3086647. https://doi.org/10.2113/2022/3086647
  • Lin, H., Zhang, X., Cao, R. H., & Wen, Z. J. (2020). Improved nonlinear Burgers shear creep model based on the time-dependent shear strength for rock. Environmental Earth Sciences, 79(6), 9. https://doi.org/10.1007/s12665-020-8896-6
  • Lion, A., & Kardelky, C. (2004). The Payne effect in finite viscoelasticity: constitutive modelling based on fractional derivatives and intrinsic time scales. International Journal of Plasticity, 20(7), 1313–1345. https://doi.org/10.1016/j.ijplas.2003.07.001
  • Liu, E. L., & He, S. M. (2012). Effects of cyclic dynamic loading on the mechanical properties of intact rock samples under confining pressure conditions. Engineering Geology, 125, 81–91. https://doi.org/10.1016/j.enggeo.2011.11.007
  • Liu, H. Y., Lv, S. R., Zhang, L. M., & Yuan, X. P. (2015). A dynamic damage constitutive model for a rock mass with persistent joints. International Journal of Rock Mechanics and Mining Sciences, 75, 132–139. https://doi.org/10.1016/j.ijrmms.2015.01.013
  • Liu, Y., & Dai, F. (2018). A damage constitutive model for intermittent jointed rocks under cyclic uniaxial compression. International Journal of Rock Mechanics and Mining Sciences, 103, 289–301. https://doi.org/10.1016/j.ijrmms.2018.01.046
  • Liu, Y., Dai, F., Dong, L., Xu, N., & Feng, P. (2018). Experimental investigation on the fatigue mechanical properties of intermittently jointed rock models under cyclic uniaxial compression with different loading parameters. Rock Mechanics and Rock Engineering, 51(1), 47–68. https://doi.org/10.1007/s00603-017-1327-7
  • Ma, L., Wang, Y., Wang, M., Xue, B., & Duan, L. (2021). Mechanical properties of rock salt under combined creep and fatigue. International Journal of Rock Mechanics and Mining Sciences, 141, 104654. https://doi.org/10.1016/j.ijrmms.2021.104654
  • Meng, Q., Zhang, M., Zhang, Z., Han, L., & Pu, H. (2019). Research on non-linear characteristics of rock energy evolution under uniaxial cyclic loading and unloading conditions. Environmental Geology, 78, 650–651.
  • Niya, S. M. R., & Selvadurai, A. P. S. (2021). Modeling the approach of non-mated rock fracture surfaces under quasi-static normal load cycles. Rock Mechanics and Rock Engineering, 54(4), 1885–1896. https://doi.org/10.1007/s00603-020-02349-z
  • Voznesenskii, A. S., Krasilov, M. N., Kutkin, Y. O., Tavostin, M. N., & Osipov, Y. V. (2017). Features of interrelations between acoustic quality factor and strength of rock salt during fatigue cyclic loadings. International Journal of Fatigue, 97, 70–78. https://doi.org/10.1016/j.ijfatigue.2016.12.027
  • Wang, Y., Gao, S. H., Li, C. H., & Han, J. Q. (2021). Energy dissipation and damage evolution for dynamic fracture of marble subjected to freeze-thaw and multiple level compressive fatigue loading. International Journal of Fatigue, 142, 105927. https://doi.org/10.1016/j.ijfatigue.2020.105927
  • Wei, G., & Zhang, X. (2019). Calculation of rotation and shearing dislocation deformation of underlying shield tunnels due to foundation pit excavation. Journal of Central South University, 50, 2273–2284.
  • Xie, S. J., Lin, H., Chen, Y. F., & Wang, Y. X. (2021). A new nonlinear empirical strength criterion for rocks under conventional triaxial compression. Journal of Central South University, 28(5), 1448–1458. https://doi.org/10.1007/s11771-021-4708-8
  • Yan, F., Feng, X. T., Chen, R., Xia, K. W., & Jin, C. Y. (2012). Dynamic tensile failure of the rock interface between tuff and basalt. Rock Mechanics and Rock Engineering, 45(3), 341–348. https://doi.org/10.1007/s00603-011-0177-y
  • Zhang, C. Y., Wang, Y. X., Ruan, H., Ke, B., & Lin, H. (2021a). The strain characteristics and corresponding model of rock materials under uniaxial cyclic load/unload compression and their deformation and fatigue damage analysis. Archive of Applied Mechanics, 91(6), 2481–2496. https://doi.org/10.1007/s00419-021-01899-0
  • Zhang, X., Lin, H., Wang, Y., & Zhao, Y. (2021b). Creep damage model of rock mass under multi-level creep load based on spatio-temporal evolution of deformation modulus. Archives of Civil and Mechanical Engineering, 21(2), 71. https://doi.org/10.1007/s43452-021-00224-4
  • Zhang, X., Lin, H., Wang, Y., Yong, R., Zhao, Y., & Du, S. (2021c). Damage evolution characteristics of saw-tooth joint under shear creep condition. International Journal of Damage Mechanics, 30(3), 453–480. https://doi.org/10.1177/1056789520974420
  • Zhao, Y. L., Wang, Y. X., Wang, W. J., Tang, L. M., Liu, Q., & Cheng, G. M. (2019). Modeling of rheological fracture behaviour of rock cracks subjected to hydraulic pressure and far field stresses. Theoretical and Applied Fracture Mechanics, 101, 59–66. https://doi.org/10.1016/j.tafmec.2019.01.026
  • Zhao, Y., Liu, Q., Zhang, C., Liao, J., Lin, H., & Wang, Y. (2021). Coupled seepage-damage effect in fractured rock masses: model development and a case study. International Journal of Rock Mechanics and Mining Sciences, 144, 104822. https://doi.org/10.1016/j.ijrmms.2021.104822
  • Zhao, Y., Zhang, L., Wang, W., Wan, W., & Ma, W. (2018). Separation of elastoviscoplastic strains of rock and a nonlinear creep model. International Journal of Geomechanics, 18(1), 04017129. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001033
  • Zhou, H. W., Wang, C. P., Han, B. B., & Duan, Z. Q. (2011). A creep constitutive model for salt rock based on fractional derivatives. International Journal of Rock Mechanics and Mining Sciences, 48(1), 116–121. https://doi.org/10.1016/j.ijrmms.2010.11.004
  • Zhou, X., Li, J. T., & Lin, H. (2020). Analysis of Internal Stress Distribution and Mechanics Characteristics of Pre-existing Cavity in Brittle Rock Under Triaxial Cyclic Loading. Frontiers in Earth Science, 8, 11. https://doi.org/10.3389/feart.2020.00033
  • Zhou, X., Xie, Y. J., Long, G. C., & Li, J. T. (2021). Effect of surface characteristics of aggregates on the compressive damage of high-strength concrete based on 3D discrete element method. Construction and Building Materials, 301, 124101. https://doi.org/10.1016/j.conbuildmat.2021.124101
  • Zhou, X., Xie, Y. J., Long, G. C., Zeng, X. H., Li, J. T., Yao, L., Jiang, W. H., & Pan, Z. L. (2021). DEM analysis of the effect of interface transition zone on dynamic splitting tensile behaviour of high-strength concrete based on multi-phase model. Cement and Concrete Research, 149, 106577. https://doi.org/10.1016/j.cemconres.2021.106577

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.