85
Views
1
CrossRef citations to date
0
Altmetric
Original Articles

Instantaneous and long-term performance of foamed concrete slabs

ORCID Icon & ORCID Icon
Pages 3899-3919 | Received 26 Jul 2022, Accepted 22 Dec 2022, Published online: 08 Jan 2023

References

  • Abd, S. M., & Ghalib, D. (2018). Flexural behaviour of lightweight foamed concrete beams reinforced with GFRP bars. Civil Engineering Journal, 4(2), 278–293. https://doi.org/10.28991/cej-030991
  • Abdulridha, M. A., Salman, M. M., & Banyhussan, Q. S. (2021). Effect polypropylene of fiber on drying shrinkage cracking of concrete pavement using response surface methodology. Journal of Engineering and Sustainable Development (JEASD), 25(3).
  • ACI (American Concrete Institute). (2019). Building code requirements for structural concrete and commentary. ACI 318-19M. ACI.
  • Aire, C., Mendoza, C., & Davila, P. (2011). Polypropylene fibers reinforced concrete: Optimization on plastic shrinkage cracking. Proceedings of the Second International Conference on Future Concrete. UAE.
  • Allouzi, R. (2020). Behavior of foamed concrete slabs using various reinforcement schemes. ACI Structural Journal, 117(5).
  • Allouzi, R., Al Qatawna, A., & Al-Kasasbeh, T. (2020). Lightweight foamed concrete mixture for structural use. ACI Materials Journal, 117(3), 99–109.
  • Al Qatawna, A. (2019). Flexural behavior of one-way fiber foam concrete slabs reinforced with glass fiber grid [Master’s Thesis]. University of Jordan.
  • American Concrete Institute. (1987). Guide for structural lightweight aggregate concrete (ACI 213R-87). Concrete International.
  • American Concrete Institute. (1993). Guide for cellular concretes above 800 kg/m3 (ACI 523.3R-93). ACI. https://www.concrete.org/publications/internationalconcreteabstractsportal/m/details/id/5228
  • Amran, M., Fediuk, R., Vatin, N., Huei Lee, Y., Murali, G., Ozbakkaloglu, T., Klyuev, S., & Alabduljabber, H. (2020). Fibre-reinforced foamed concretes: A review. Materials, 13(19), 4323. https://doi.org/10.3390/ma13194323
  • Amran, Y. M., Farzadnia, N., & Ali, A. A. (2015). Properties and applications of foamed concrete; a review. Construction and Building Materials, 101, 990–1005. https://doi.org/10.1016/j.conbuildmat.2015.10.112
  • AS 3600-2009: Concrete structures. Standards Australia, Sydney, NSW, Australia. https://www.studocu.com/row/document/the-university-of-the-south-pacific/design-of-concrete-structures/as-3600-2009-concrete-structures/17966948
  • Awang, H., Ahmad, M. H., & Al-Mulali, M. Z. (2015). Influence of kenaf and polypropylene fibres on mechanical and durability properties of fibre reinforced lightweight foamed concrete. Journal of Engineering Science and Technology, 10(4), 496–508.
  • Banthia, N., & Gupta, R. (2006). Influence of polypropylene fiber geometry on plastic shrinkage cracking in concrete. Cement and Concrete Research, 36(7), 1263–1267. https://doi.org/10.1016/j.cemconres.2006.01.010
  • Bing, C., Zhen, W., & Ning, L. (2012). Experimental research on properties of high-strength foamed concrete. Journal of Materials in Civil Engineering, 24(1), 113–118. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000353
  • Bouzeboudja, F., & Ahmed, C. A. (2018). Modeling of the interface between the concrete and the fibers grid in concrete slab. Journal of Building Materials and Structures, 5(1), 137–146. https://doi.org/10.34118/jbms.v5i1.52
  • BS EN 1992-1-1. (2004). Eurocode 2: Design of concrete structures. Part 1 – General rules and rules for buildings. BSI.
  • Cividini, B. (1981). Long-term deflection of aerated reinforced concrete slabs. International Journal of Cement Composites and Lightweight Concrete, 3(3), pp.213–221.
  • CSA (Canadian Standards Association). (2004). CSA-A23-04: Design of concrete structures. CSA.
  • Dahl, P. A. (1988). Risstendens ved plastisk svinn for betong tilsatt Polycrete fiber. SINTEF rapport STF65 A88036.
  • Davies, J. M. (1993). Sandwich panels. Thin-Walled Structures, 16(1–4), 179–198. https://doi.org/10.1016/0263-8231(93)90044-B
  • de Villiers, J. P., van Zijl, G. P., & van Rooyen, A. S. (2017). Bond of deformed steel reinforcement in lightweight foamed concrete. Structural Concrete, 18(3), 496–506. https://doi.org/10.1002/suco.201600019
  • D790-03. (2003). Standard test methods for flexural properties of unreinforced and reinforced plastics and electrical insulating materials. ASTM International.
  • Dransfield, J. M. (2000). Foamed concrete: Introduction to the product and its properties. In One day awareness seminar on ‘Foamed Concrete’: Properties, applications and potential (pp. 1–11). University of Dundee.
  • Gailitis, R., Korniejenko, K., Sprince, A., & Pakrastins, L. (2020). Comparison of the long-term properties of foamed concrete and geopolymer concrete in compression. AIP Conference Proceedings, 2239(1), 020012.
  • Ganesan, S., Othuman Mydin, M. A., Mohd Yunos, M. Y., & Mohd Nawi, M. N. (2015). Thermal properties of foamed concrete with various densities and additives at ambient temperature. Applied Mechanics and Materials, 747, 230–233. https://doi.org/10.4028/www.scientific.net/AMM.747.230
  • Hulimka, J., Krzywoń, R., & Jędrzejewska, A. (2017). Laboratory tests of foam concrete slabs reinforced with composite grid. Procedia Engineering, 193, 337–344. https://doi.org/10.1016/j.proeng.2017.06.222
  • Islam, G. S., & Gupta, S. D. (2016). Evaluating plastic shrinkage and permeability of polypropylene fiber reinforced concrete. International Journal of Sustainable Built Environment, 5(2), 345–354. https://doi.org/10.1016/j.ijsbe.2016.05.007
  • Jameel, M. S., Raza, A., El Ouni, M. H., & Alashker, Y. (2022). The compressive and tensile behavior of polypropylene fibers and activated fly ash incorporated concrete at elevated temperatures. European Journal of Environmental and Civil Engineering, 1–18. https://doi.org/10.1080/19648189.2022.2066183
  • Jones, M. R., & McCarthy, A. (2005a). Utilising unprocessed low-lime coal fly ash in foamed concrete. Fuel, 84(11), 1398–1409. https://doi.org/10.1016/j.fuel.2004.09.030
  • Jones, M. R., & McCarthy, A. (2005b). Preliminary views on the potential of foamed concrete as a structural material. Magazine of Concrete Research, 57(1), 21–31. https://doi.org/10.1680/macr.2005.57.1.21
  • Jones, M. R., & McCarthy, A. (2005c). Behaviour and assessment of foamed concrete for construction applications. Proceedings of the International Conference on the Use of Foamed Concrete in Construction 2005 (pp. 61–88).
  • Jones, M. R., & McCarthy, A. (2006). Heat of hydration in foamed concrete: Effect of mix constituents and plastic density. Cement and Concrete Research, 36(6), 1032–1041. https://doi.org/10.1016/j.cemconres.2006.01.011
  • Jones, M. R., McCarthy, M. J., & McCarthy, A. (2003). Moving fly ash utilisation in concrete forward: A UK perspective. Proceedings of the 2003 International Ash Utilization Symposium (pp. 20–22). University Press of Kentucky.
  • Kado, B., Mohammad, S., Lee, Y. H., Shek, P. N., & Kadir, M. A. A. (2018). Effect of curing method on properties of lightweight foamed concrete. International Journal of Engineering & Technology, 7(2.29), 927–932. https://doi.org/10.14419/ijet.v7i2.29.14285
  • Kuranlı, Ö. F., Uysal, M., Abbas, M. T., Çoşgun, T., Niş, A., Aygörmez, Y., Canpolat, O., & Al-Mashhadani, M. M. (2022). Mechanical and durability properties of slag/fly ash based alkali-activated concrete reinforced with steel, polypropylene and polyamide fibers. European Journal of Environmental and Civil Engineering, 1–26. https://doi.org/10.1080/19648189.2022.2031302
  • Lee, Y. L., Lim, J. H., Lim, S. K., & Tan, C. S. (2018). Flexural behaviour of reinforced lightweight foamed mortar beams and slabs. KSCE Journal of Civil Engineering, 22(8), 2880–2889. https://doi.org/10.1007/s12205-017-1822-0
  • Liang, S., & Wei, Y. (2019). Methodology of obtaining intrinsic creep property of concrete by flexural deflection test. Cement and Concrete Composites, 97, 288–299. https://doi.org/10.1016/j.cemconcomp.2019.01.003
  • Madhavi, T. C., Raju, L. S., & Mathur, D. (2014). Polypropylene fiber reinforced concrete-a review. International Journal of Emerging Technology and Advanced Engineering, 4(4), 114–118.
  • Nizina, T., & Balykov, A. (2016). Experimental-statistical models of properties of modified fiberreinforced fine-grained concretes. Magazine of Civil Engineering, 62(02), 13–25. https://doi.org/10.5862/MCE.62.2
  • Qatawna, A., Allouzi, R., & Qaqish, S. (2019). Experimental and analytical behavior of one-way fiber foamed concrete slabs reinforced with/without glass fiber grid under 4-point flexural test. International Journal of Building Pathology and Adaptation. https://doi.org/10.1108/IJBPA-03-2022-0049
  • Rommel, E., Prasetyo, L., Rusdianto, Y., Karimah, R., Riyanto, A. S., & Cahyo, S. N. (2020). The insulation properties of foam concrete with the use of foam-agent and fly-ash. IOP Conference Series: Materials Science and Engineering, 821(1), 012013. https://doi.org/10.1088/1757-899X/821/1/012013
  • Soroushian, P., Mirza, F., & Alhozajiny, A. (1993). Plastic shrinkage cracking of polypropylene fiber reinforced concrete. Materials Journal, 92(5), 553–560.
  • Szechyńska-Hebda, M., Marczyk, J., Ziejewska, C., Hordyńska, N., Mikuła, J., & Hebda, M. (2019). Optimal design of pH-neutral geopolymer foams for their use in ecological plant cultivation systems. Materials, 12(18), 2999. https://doi.org/10.3390/ma12182999
  • Tan, J. H., Lim, S. K., & Lim, J. H. (2005). Flexural behaviour of reinforced lightweight foamed concrete beams. Magazine of Concrete Research, 27, 21–31.
  • Toqa, A. K., & Allouzi, R. (2020). Behavior of polypropylene fiber reinforced foam concrete beams laterally reinforced with/without glass fiber grid. International Journal of Structural Integrity, 12(3), 439–453.
  • Vakhshouri, B. (2017). Comparative study of the long-term deflection of conventional and self-compacting concrete with light-weight concrete slabs [Doctoral dissertation].
  • Vakhshouri, B. (2018). Time-dependent deflection of conventional, self-compacting and lightweight concrete slabs. Proceedings of the Institution of Civil Engineers - Structures and Buildings, 171(6), 434–443. https://doi.org/10.1680/jstbu.17.00024
  • Vakhshouri, B., & Nejadi, S. (2017). Instantaneous deflection of light-weight concrete slabs. Frontiers of Structural and Civil Engineering, 11(4), 412–423. https://doi.org/10.1007/s11709-017-0416-8
  • Zweben, C., Smith, W. S., & Wardle, M. W. (1979). Test methods for fiber tensile strength, composite flexural modulus, and properties of fabric-reinforced laminates. In Composite Materials: Testing and Design (Fifth Conference). June. ASTM International.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.