145
Views
0
CrossRef citations to date
0
Altmetric
Original Articles

Study on the crack propagation between blastholes under different detonating sequence using finite element method

, , , , , , & show all
Pages 4311-4336 | Received 13 Apr 2022, Accepted 22 Feb 2023, Published online: 10 Apr 2023

References

  • Achenbach, J. D., & Thau, S. A. (1980). Wave propagation in elastic solids. Journal of Applied Mechanics, 41(2), 544. https://doi.org/10.1115/1.3423344
  • Aldas, G. G. U., & Bilgin, H. A. (2003). An interpretation of the effects of using different delay intervals in blasting at an open-cast mine in Turkey. Rock Mechanics & Rock Engineering, 36(5), 409–421. https://doi.org/10.1007/s00603-003-0005-0
  • Aliabadian, Z., & Sharafisafa, M. (2014). Numerical modeling of presplitting controlled method in continuum rock masses. Arabian Journal of Geosciences, 7(12), 5005–5020. https://doi.org/10.1007/s12517-013-1158-0
  • Bendezu, M., Romanel, C., & Roehl, D. (2017). Finite element analysis of blast-induced fracture propagation in hard rocks. Computers & Structures, 182, 1–13. https://doi.org/10.1016/j.compstruc.2016.11.006
  • Esen, S., Onederra, I., & Bilgin, H. A. (2003). Modelling the size of the crushed zone around a blasthole. International Journal of Rock Mechanics and Mining Sciences, 40(4), 485–495. https://doi.org/10.1016/S1365-1609(03)00018-2
  • González-Herrera, A., & Zapatero, J. (2005). Influence of minimum element size to determine crack closure stress by the finite element method. Engineering Fracture Mechanics, 72(3), 337–355. https://doi.org/10.1016/j.engfracmech.2004.04.002
  • Guo, J. S., Ma, L. Q., Wang, Y., & Wang, F. T. (2017). Hanging wall pressure relief mechanism of horizontal section top-coal caving face and its application—A case study of the Urumqi coalfield, China. Energies, 10(9), 1371. https://doi.org/10.3390/en10091371
  • Gushanov, A. R. (2001). Dependence of the shape of a detonation wave front on the detonation wave velocity upon detonation of a cylindrical charge. Combustion Explosion and Shock Waves, 37(1), 113–118. https://doi.org/10.1023/A:1002833128951
  • Henrych, J., & Abrahamson, G. R. (1980). The dynamics of explosion and its use. Journal of Applied Mechanics, 47(1), 218. https://doi.org/10.1115/1.3153619
  • Hu, J. Z., Zhang, X. Y., Gao, Y. B., Ma, Z., & Zhang, X. (2019). Directional presplit blasting in an innovative no-pillar mining approach. Journal of Geophysics and Engineering, 16(5), 875–893. https://doi.org/10.1093/jge/gxz053
  • Jayasinghe, L. B., Shang, J. L., Zhao, Z. Y., & Goh, A. T. C. (2019). Numerical investigation into the blasting-induced damage characteristics of rocks considering the role of in-situ stresses and discontinuity persistence. Computers and Geotechnics, 116, 103207. https://doi.org/10.1016/j.compgeo.2019.103207
  • Johansson, D., & Ouchterlony, F. (2013). Shock wave interactions in rock blasting: The use of short delays to improve fragmentation in model-scale. Rock Mechanics & Rock Engineering, 46(1), 1–18. https://doi.org/10.1007/s00603-012-0249-7
  • Li, X. P., Huang, J. H., Luo, Y., & Chen, P. P. (2017). A study of smooth wall blasting fracture mechanisms using the time sequence control method. International Journal of Rock Mechanics & Mining Sciences, 92, 1–8. https://doi.org/10.1016/j.ijrmms.2016.12.001
  • Li, X. P., Lv, J. L., Huang, J. H., Luo, Y., & Liu, T. T. (2019). Numerical simulation research of smooth wall blasting using the timing sequence control method under different primary blast hole shapes. Shock and Vibration, 2019, 1–16. https://doi.org/10.1155/2019/2425904
  • Liu, T. T., Li, X. P., Zheng, Y., Luo, Y., Guo, Y. H., Cheng, G. W., & Zhang, Z. Z. (2020). Study on S-wave propagation through parallel rock joints under in situ stress. Waves in Random and Complex Media, 2020(2), 1–24. https://doi.org/10.1080/17455030.2020.1813350
  • Li, X. P., Xu, M. N., Wang, Y., Wang, G., Huang, J. H., Yin, W. S., & Yan, G. (2021). Numerical study on crack propagation of rock mass using the time sequence controlled and notched blasting method. European Journal of Environmental and Civil Engineering, 1, 1–19. https://doi.org/10.1080/19648189.2021.1956597
  • Luo, Y., Wei, X. Q., Huang, J. H., Zhang, G., Bian, X., & Li, X. P. (2021). PPV distribution of sidewalls induced by underground cavern blasting excavation. Scientific Report, 11, 6647. https://doi.org/10.1038/s41598-021-86055-y
  • Ma, L., Li, K., Xiao, S., Ding, X., & Chinyanta, S. (2016b). Research on effects of blast casting vibration and vibration absorption of presplitting blasting in open cast mine. Shock and Vibration, 2016(6), 1–9. https://doi.org/10.1155/2016/4091732
  • Ma, C. C., Li, T. B., Xing, H. L., Zhang, H., Wang, M. J., Liu, T. Y., Chen, G. Q., & Chen, Z. Q. (2016a). Brittle rock modeling approach and its validation using excavation-induced micro-seismicity. Rock Mechanics & Rock Engineering, 49(8), 3175–3188. https://doi.org/10.1007/s00603-016-0941-0
  • Qiu, X. Y., Shi, X. Z., Gou, Y. G., Zhou, J., Chen, H., & Huo, X. F. (2018). Short-delay blasting with single free surface: Results of experimental tests. Tunnelling and Underground Space Technology, 74(2018), 119–130. https://doi.org/10.1016/j.tust.2018.01.014
  • Rossmanith, H. P., Daehnke, A., Nasmillner, Rek, Kouzniak, N., & Uenishi, K. (1997). Fracture mechanics applications to drilling and blasting. Fatigue & Fracture of Engineering Materials & Structures, 20(11), 1617–1636. https://doi.org/10.1111/j.1460-2695.1997.tb01515.x
  • Sazid, M., & Singh, T. N. (2015). Numerical assessment of spacing–burden ratio to effective utilization of explosive energy. International Journal of Mining Science and Technology, 25(2), 291–297. https://doi.org/10.1016/j.ijmst.2015.02.019
  • Shi, X. Z., & Chen, S. R. (2011). Delay time optimization in blasting operations for mitigating the vibration-effects on final pit walls’ stability. Soil Dynamics & Earthquake Engineering, 31(8), 1154–1158. https://doi.org/10.1016/j.soildyn.2011.04.004
  • TCP/C2. (2016). The construction bidding documents with civil engineering and metal structure installation project on the water conveyance and generation system of Tianchi pumped storage power station. China’s Hydropower Consulting Group East China Survey Design and Research Institute. (in Chinese)
  • Vanbrabant, F., & Espinosa, A. (2006). Impact of short delays sequence on fragmentation by means of electronic detonators: Theoretical concepts and field validation. Fragblast, 8, 326–331.
  • Wang, G., Luo, Y., Li, X., Liu, T., Xu, M., & Qu, D. (2020). Study on dynamic mechanical properties and meso-deterioration mechanism of sandstone under cyclic impact load. Arabian Journal for Science and Engineering, 45(5), 3863–3875. https://doi.org/10.1007/s13369-019-04296-6
  • Wei, J., & Dharani, L. R. (2005). Fracture mechanics of laminated glass subjected to blast loading. Theoretical and Applied Fracture Mechanics, 44(2), 157–167. https://doi.org/10.1016/j.tafmec.2005.06.004
  • Xu, M. N., Li, X. P., Liu, T. T., Luo, Y., Huang, J. H., Wang, G., Wang, Y., & Gao, W. (2021). A study on hollow effect and safety design of deep crossing caverns under blasting vibration. Tunnelling and Underground Space Technology, 111, 103866. https://doi.org/10.1016/j.tust.2021.103866
  • Yang, H. S., & Rai, P. (2011). Characterization of fragment size vis-à-vis delay time in quarry blasts. Powder Technology, 211(1), 120–126. https://doi.org/10.1016/j.powtec.2011.04.006
  • Yang, Y. Z., Shao, Z. S., Mi, J. F., & Xiong, X. F. (2018). Effect of adjacent hole on the blast-induced stress concentration in rock blasting. Advances in Civil Engineering, 2018(3), 1–13. https://doi.org/10.1155/2018/5172878
  • Yang, J. H., Yao, C., Jiang, Q. H., Lu, W. B., & Jiang, S. H. (2017). 2D numerical analysis of rock damage induced by dynamic in-situ stress redistribution and blast loading in underground blasting excavation. Tunnelling and Underground Space Technology, 70, 221–232. https://doi.org/10.1016/j.tust.2017.08.007
  • Ye, H. W., Tang, K., Wan, T., Wang, C., Lei, T., Li, X. P., & Saliou, C. M. (2017). Optimization of time sequence controlled pre-splitting blasting parameters and its application. Explosion and Shock Waves, 37(3), 502–509. https://doi.org/10.11883/1001-1455(2017)03-0502-08
  • Yi, C. P., Johansson, D., & Greberg, J. (2018). Effects of in-situ stresses on the fracturing of rock by blasting. Computers and Geotechnics, 104(2018), 321–330. https://doi.org/10.1016/j.compgeo.2017.12.004
  • Yi, C. P., Johansson, D., Nyberg, U., & Beyglou, A. (2016). Stress wave interaction between two adjacent blast holes. Rock Mechanics & Rock Engineering, 49(5), 1803–1812. https://doi.org/10.1007/s00603-015-0876-x
  • Yi, C., Sjoeberg, J., & Johansson, D. (2017). Numerical modelling for blast-induced fragmentation in sublevel caving mines. Tunnelling & Underground Space Technology, 68, 167–173. https://doi.org/10.1016/j.tust.2017.05.030
  • Yu, Y. L. (2004). Theory and technology of engineering blasting. Metallurgical Industry Press. 121–137. (in Chinese)
  • Yuan, W., Liu, S. G., Wang, W., Su, X. B., Li, Z. H., Li, J. X., Wen, L., Chang, J. F., & Sun, X. Y. (2019). Numerical study on the fracturing mechanism of shock wave interactions between two adjacent blast holes in deep rock blasting. Earthquake Engineering and Engineering Vibration, 18(4), 735–746. https://doi.org/10.1007/s11803-019-0533-6
  • Zhao, J. J., Zhang, Y., & Ranjith, P. G. (2017). Numerical simulation of blasting-induced fracture expansion in coal masses. International Journal of Mining Science and Technology, 100, 28–39. https://doi.org/10.1016/j.ijrmms.2017.10.015
  • Zhao, J. J., Zhang, Y., & Ranjith, P. G. (2020). Numerical modelling of blast-induced fractures in coal masses under high in-situ stresses. Engineering Fracture Mechanics, 225, 106749. https://doi.org/10.1016/j.engfracmech.2019.106749
  • Zhu, R. G. (1986). Study for time-order-controlled fracture in the exaction of lager rock caverns. In Symposium Large Rock Caverns in Finland.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.